Keyword search (3,448 papers available)


The effect of step-feeding distribution ratio on high concentration perchlorate removal performance in ABR system with heterotrophic combined sulfur autotrophic process.

Author(s): Li H, Li K, Guo J, Chen Z, Han Y, Song Y, Lu C, Hou Y, Zhang D, Zhang Y

In a lab-scale anaerobic baffled reactor (ABR) with eight compartments, the heterotrophic and sulfur autotrophic processes were combined to remove perchlorate. And then, the step-feeding distribution ratio of the heterotrophic perchlorate reduction unit (HP...

Article GUID: 33485237

Acceleration mechanism of bioavailable Fe(Ⅲ) on Te(IV) bioreduction of Shewanella oneidensis MR-1: Promotion of electron generation, electron transfer and energy level.

Author(s): He Y, Guo J, Song Y, Chen Z, Lu C, Han Y, Li H, Hou Y, Zhao R

The release of highly toxic tellurite into the aquatic environment poses significant environmental risks. The acceleration mechanism and tellurium nanorods (TeNPs) characteristics with bioavailable ferric citrate (Fe(III)) were investigated in the tellurite...

Article GUID: 32853890

Transcriptomic analysis suggests the inhibition of DNA damage repair in green alga Raphidocelis subcapitata exposed to roxithromycin.

Author(s): Guo J, Bai Y, Chen Z, Mo J, Li Q, Sun H, Zhang Q

Ecotoxicol Environ Saf. 2020 Jun 03;201:110737 Authors: Guo J, Bai Y, Chen Z, Mo J, Li Q, Sun H, Zhang Q

Article GUID: 32505758

Effect and ameliorative mechanisms of polyoxometalates on the denitrification under sulfonamide antibiotics stress.

Author(s): Guo H, Chen Z, Lu C, Guo J, Li H, Song Y, Han Y, Hou Y

Bioresour Technol. 2020 Feb 22;305:123073 Authors: Guo H, Chen Z, Lu C, Guo J, Li H, Song Y, Han Y, Hou Y

Article GUID: 32145698

Effect of dissolved oxygen on simultaneous removal of ammonia, nitrate and phosphorus via biological aerated filter with sulfur and pyrite as composite fillers.

Author(s): Li Y, Guo J, Li H, Song Y, Chen Z, Lu C, Han Y, Hou Y

Bioresour Technol. 2019 Oct 28;296:122340 Authors: Li Y, Guo J, Li H, Song Y, Chen Z, Lu C, Han Y, Hou Y

Article GUID: 31704601

Enhanced denitrification performance and biocatalysis mechanisms of polyoxometalates as environmentally-friendly inorganic redox mediators.

Author(s): Guo H, Chen Z, Guo J, Lu C, Song Y, Han Y, Li H, Hou Y

Bioresour Technol. 2019 Jul 16;291:121816 Authors: Guo H, Chen Z, Guo J, Lu C, Song Y, Han Y, Li H, Hou Y

Article GUID: 31344631

Rapid of cultivation dissimilatory perchlorate reducing granular sludge and characterization of the granulation process.

Author(s): Yin P, Guo J, Xiao S, Chen Z, Song Y, Ren X

Bioresour Technol. 2019 Mar;276:260-268 Authors: Yin P, Guo J, Xiao S, Chen Z, Song Y, Ren X

Article GUID: 30640020

A combined heterotrophic and sulfur-based autotrophic process to reduce high concentration perchlorate via anaerobic baffled reactors: Performance advantages of a step-feeding strategy.

Author(s): Li K, Guo J, Li H, Han Y, Chen Z, Song Y, Xing Y, Zhang C

Bioresour Technol. 2019 May;279:297-306 Authors: Li K, Guo J, Li H, Han Y, Chen Z, Song Y, Xing Y, Zhang C

Article GUID: 30738356


Title:Acceleration mechanism of bioavailable Fe(Ⅲ) on Te(IV) bioreduction of Shewanella oneidensis MR-1: Promotion of electron generation, electron transfer and energy level.
Authors:He YGuo JSong YChen ZLu CHan YLi HHou YZhao R
Link:https://www.ncbi.nlm.nih.gov/pubmed/32853890
DOI:10.1016/j.jhazmat.2020.123728
Category:J Hazard Mater
PMID:32853890
Dept Affiliation: ENCS
1 School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China.
2 School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China. Electronic address: jianbguo@163.com.
3 Department of Building, Civil, and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W. Montreal, Quebec, Canada.

Description:

Acceleration mechanism of bioavailable Fe(?) on Te(IV) bioreduction of Shewanella oneidensis MR-1: Promotion of electron generation, electron transfer and energy level.

J Hazard Mater. 2020 Aug 19; 403:123728

Authors: He Y, Guo J, Song Y, Chen Z, Lu C, Han Y, Li H, Hou Y, Zhao R

Abstract

The release of highly toxic tellurite into the aquatic environment poses significant environmental risks. The acceleration mechanism and tellurium nanorods (TeNPs) characteristics with bioavailable ferric citrate (Fe(III)) were investigated in the tellurite (Te(IV)) bioreduction. Experiments showed that 5?mM Fe(III) increased the Te(IV) bioreduction rate from 0 to 12.40?mg/(L·h). Cyclic voltammetry, electrochemical impedance spectroscopy and Tafel were used to investigate electron transfer during Te(IV) bioreduction. NADH production (electron production) was significantly enhanced to 138% by Fe(III). Meanwhile Fe(III) stimulated the increase of cytochrome c, resulting in increased electron transport system activity. In addition, Fe(III) facilitated the secretion of extracellular polymeric substances (EPS) and reduced cell membrane permeability, thus reducing the toxicity of Te(IV) to cells. The increase of ATP provided energy for the metabolic process of Te(IV) bioreduction, playing an active role in cell activity. Based on the above analysis, the acceleration mechanism of Fe(III) on Te(IV) bioreduction was proposed from the aspects of electron generation, electron transfer and energy level. Zeta potential and FT-IR spectra indicated that the stability of TeNPs contributed to the covered EPS. This study provides further understanding the acceleration mechanism of Te(IV) bioreduction and promising strategy for improving the stability of TeNPs.

PMID: 32853890 [PubMed - as supplied by publisher]