Reset filters

Search publications


By keyword
By department

No publications found.

 

Cerebellar Cortex 4-12 Hz Oscillations and Unit Phase Relation in the Awake Rat.

Authors: Lévesque MGao HSouthward CLanglois JMPLéna CCourtemanche R


Affiliations

1 Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada.
2 Institut de Biologie, CNRS UMR 8197-U 1024, École Normale Supérieure, Paris, France.
3 Department of Health, Kinesiology and Applied Physiology, Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, QC, Canada.
4 Département de Génie Informatique et Génie Logiciel, Polytechnique Montréal, Montréal, QC, Canada.

Description

Cerebellar Cortex 4-12 Hz Oscillations and Unit Phase Relation in the Awake Rat.

Front Syst Neurosci. 2020; 14:475948

Authors: Lévesque M, Gao H, Southward C, Langlois JMP, Léna C, Courtemanche R

Abstract

Oscillations in the granule cell layer (GCL) of the cerebellar cortex have been related to behavior and could facilitate communication with the cerebral cortex. These local field potential (LFP) oscillations, strong at 4-12 Hz in the rodent cerebellar cortex during awake immobility, should also be an indicator of an underlying influence on the patterns of the cerebellar cortex neuronal firing during rest. To address this hypothesis, cerebellar cortex LFPs and simultaneous single-neuron activity were collected during LFP oscillatory periods in the GCL of awake resting rats. During these oscillatory episodes, different types of units across the GCL and Purkinje cell layers showed variable phase-relation with the oscillatory cycles. Overall, 74% of the Golgi cell firing and 54% of the Purkinje cell simple spike (SS) firing were phase-locked with the oscillations, displaying a clear phase relationship. Despite this tendency, fewer Golgi cells (50%) and Purkinje cell's SSs (25%) showed an oscillatory firing pattern. Oscillatory phase-locked spikes for the Golgi and Purkinje cells occurred towards the peak of the LFP cycle. GCL LFP oscillations had a strong capacity to predict the timing of Golgi cell spiking activity, indicating a strong influence of this oscillatory phenomenon over the GCL. Phase-locking was not as prominent for the Purkinje cell SS firing, indicating a weaker influence over the Purkinje cell layer, yet a similar phase relation. Overall, synaptic activity underlying GCL LFP oscillations likely exert an influence on neuronal population firing patterns in the cerebellar cortex in the awake resting state and could have a preparatory neural network shaping capacity serving as a neural baseline for upcoming cerebellar operations.

PMID: 33240052 [PubMed]


Keywords: cerebellumnetworkoscillationphase-lockingrhythmicity


Links

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33240052

DOI: 10.3389/fnsys.2020.475948