Author(s): Maria S Shadrina
Atomistic molecular dynamics simulations of diffusion of O2 from the hemes to the external solvent in the a- and ß-subunits of the human hemoglobin (HbA) tetramer reveal transient gas tunnels that are not seen in crystal structures. We find here that the tunnel topology, which encompasses the reported experimental Xe binding cavities, is identical in HbA& ...
Article GUID: 26226318
Author(s): Maria S Shadrina
Hemoglobin transports O2 by binding the gas at its four hemes. Hydrogen bonding between the distal histidine (HisE7) and heme-bound O2 significantly increases the affinity of human hemoglobin (HbA) for this ligand. HisE7 is also proposed to regulate the release of O2 to the solvent via a transient E7 channel. To reveal the O2 escape routes controlled by H ...
Article GUID: 26226401
Author(s): Maria S Shadrina
Standard molecular dynamics (MD) simulations of gas diffusion consume considerable computational time and resources even for small proteins. To combat this, temperature-controlled locally enhanced sampling (TLES) examines multiple diffusion trajectories per simulation by accommodating multiple noninteracting copies of a gas molecule that diffuse independe ...
Article GUID: 26938707
- Page 1 / 1 -