Reset filters

Search publications


By keyword
By department

No publications found.

 

Kinematic profiles suggest differential control processes involved in bilateral in-phase and anti-phase movements.

Authors: Shih PCSteele CJNikulin VVillringer ASehm B


Affiliations

1 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
2 Department of Psychology, Concordia University, Montreal, Quebec, Canada.
3 Department of Cognitive Neurology, University of Leipzig, Leipzig, Germany.
4 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. sehm@cbs.mpg.de.
5 Department of Cognitive Neurology, University of Leipzig, Leipzig, Germany. sehm@cbs.mpg.de.

Description

Kinematic profiles suggest differential control processes involved in bilateral in-phase and anti-phase movements.

Sci Rep. 2019 Mar 01;9(1):3273

Authors: Shih PC, Steele CJ, Nikulin V, Villringer A, Sehm B

Abstract

In-phase and anti-phase movements represent two basic coordination modes with different characteristics: during in-phase movements, bilateral homologous muscle groups contract synchronously, whereas during anti-phase movements, they contract in an alternating fashion. Previous studies suggested that in-phase movements represent a more stable and preferential bilateral movement template in humans. The current experiment aims at confirming and extending this notion by introducing new empirical measures of spatiotemporal dynamics during performance of a bilateral circle drawing task in an augmented-reality environment. First, we found that anti-phase compared to in-phase movements were performed with higher radial variability, a result that was mainly driven by the non-dominant hand. Second, the coupling of both limbs was higher during in-phase movements, corroborated by a lower inter-limb phase difference and higher inter-limb synchronization. Importantly, the movement acceleration profile between bilateral hands followed an in-phase relationship during in-phase movements, while no specific relationship was found in anti-phase condition. These spatiotemporal relationships between hands support the hypothesis that differential neural processes govern both bilateral coordination modes and suggest that both limbs are controlled more independently during anti-phase movements, while bilateral in-phase movements are elicited by a common neural generator.

PMID: 30824858 [PubMed - in process]


Links

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30824858?dopt=Abstract