Authors: Sun G, Xie Y, Wang Y, Mandl GA, Maurizio SL, Zhang H, Ottenwaelder X, Capobianco JA, Sun L
Lanthanide upconversion luminescence in nanoparticles has prompted continuous breakthroughs in information storage, temperature sensing, and biomedical applications, among others. Achieving upconversion luminescence at the molecular scale is still a critical challenge in modern chemistry. In this work, we explored the upconversion luminescence of solution dispersions of co-crystals composed of discrete mononuclear Yb(DBM)3 Bpy and Eu(DBM)3 Bpy complexes (DBM: dibenzoylmethane, Bpy: 2,2'-bipyridine). The 613 nm emission of Eu3+ was observed under excitation of Yb3+ at 980 nm. From the series of molecular assemblies studied, the most intense luminescence was obtained for a 1 : 1 molar ratio of Yb3+ : Eu3+ , resulting in a high quantum yield of 0.67 % at 2.1 W cm-2 . The structure and energy transfer mechanism of the assemblies were fully characterized. This is the first example of an Eu3+ -based upconverting system composed of two discrete mononuclear lanthanide complexes present as co-crystals in non-deuterated solution.
Keywords: Co-Crystal; Cooperative Sensitization Upconversion; Down-Shifting Luminescence; Lanthanide Complex; Molecular Upconversion Luminescence;
PubMed: https://pubmed.ncbi.nlm.nih.gov/37040148/