Dance and music share gray matter structural correlates.
Authors: Karpati FJ, Giacosa C, Foster NEV, Penhune VB, Hyde KL
Affiliations
1 International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, FAS, Département de psychologie, CP 6128, Succ. Centre Ville, Montréal, QC H3C 3J7, Canada; Faculty of Medicine, McGill University, 3605 Rue de la Montagne, Montreal, QC H3G 2M1, Canada. Electronic address: falisha.karpati@mail.mcgill.ca.
2 International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, FAS, Département de psychologie, CP 6128, Succ. Centre Ville, Montréal, QC H3C 3J7, Canada; Dept. of Psychology, Concordia University, 7141 Sherbrooke West, PY-146, Montreal, QC H4B 1R6, Canada. Electronic address: chiagiarasa@gmail.com.
3 International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, FAS, Département de psychologie, CP 6128, Succ. Centre Ville, Montréal, QC H3C 3J7, Canada; Dept. of Psychology, University of Montreal, Pavillon Marie-Victorin, 90 Avenue Vincent d'Indy, Montreal, QC H2V 2S9, Canada. Electronic address: nicholas.foster@mail.mcgill.ca.
4 International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, FAS, Département de psychologie, CP 6128, Succ. Centre Ville, Montréal, QC H3C 3J7, Canada; Dept. of Psychology, Concordia University, 7141 Sherbrooke West, PY-146, Montreal, QC H4B 1R6, Canada. Electronic address: virginia.penhune@concordia.ca.
5 International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, FAS, Département de psychologie, CP 6128, Succ. Centre Ville, Montréal, QC H3C 3J7, Canada; Faculty of Medicine, McGill University, 3605 Rue de la Montagne, Montreal, QC H3G 2M1, Canada; Dept. of Psychology, University of Montreal, Pavillon Marie-Victorin, 90 Avenue Vincent d'Indy, Montreal, QC H2V 2S9, Canada. Electronic address: krista.hyde@umontreal.ca.
Description
Dance and music share gray matter structural correlates.
Brain Res. 2017 02 15;1657:62-73
Authors: Karpati FJ, Giacosa C, Foster NEV, Penhune VB, Hyde KL
Abstract
Intensive practise of sensorimotor skills, such as music and dance, is associated with brain structural plasticity. While the neural correlates of music have been well-investigated, less is known about the neural correlates of dance. Additionally, the gray matter structural correlates of dance versus music training have not yet been directly compared. The objectives of the present study were to compare gray matter structure as measured by surface- and voxel-based morphometry between expert dancers, expert musicians and untrained controls, as well as to correlate gray matter structure with performance on dance- and music-related tasks. Dancers and musicians were found to have increased cortical thickness compared to controls in superior temporal regions. Gray matter structure in the superior temporal gyrus was also correlated with performance on dance imitation, rhythm synchronization and melody discrimination tasks. These results suggest that superior temporal regions are important in both dance- and music-related skills and may be affected similarly by both types of long-term intensive training. This work advances knowledge of the neural correlates of dance and music, as well as training-associated brain plasticity in general.
PMID: 27923638 [PubMed - indexed for MEDLINE]
Keywords: Brain; Cortical thickness; Dance; Music; Superior temporal gyrus;
Links
PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27923638?dopt=Abstract
DOI: 10.1016/j.brainres.2016.11.029