Keyword search (3,448 papers available)


Distinct features of multivesicular body-lysosome fusion revealed by a new cell-free content-mixing assay.

Author(s): Karim MA, Samyn DR, Mattie S, Brett CL

Traffic. 2018 02;19(2):138-149 Authors: Karim MA, Samyn DR, Mattie S, Brett CL

Article GUID: 29135058

The Na+(K+)/H+ exchanger Nhx1 controls multivesicular body-vacuolar lysosome fusion.

Author(s): Karim MA, Brett CL

Mol Biol Cell. 2018 02 01;29(3):317-325 Authors: Karim MA, Brett CL

Article GUID: 29212874

Rab-Effector-Kinase Interplay Modulates Intralumenal Fragment Formation during Vacuole Fusion.

Author(s): Karim MA, McNally EK, Samyn DR, Mattie S, Brett CL

Dev Cell. 2018 10 08;47(1):80-97.e6 Authors: Karim MA, McNally EK, Samyn DR, Mattie S, Brett CL

Article GUID: 30269949

A Cell-Free Content Mixing Assay for SNARE-Mediated Multivesicular Body-Vacuole Membrane Fusion.

Author(s): Karim MA, Samyn DR, Brett CL

Methods Mol Biol. 2019;1860:289-301 Authors: Karim MA, Samyn DR, Brett CL

Article GUID: 30317513

Visualization of SNARE-Mediated Organelle Membrane Hemifusion by Electron Microscopy.

Author(s): Mattie S, Kazmirchuk T, Mui J, Vali H, Brett CL

Methods Mol Biol. 2019;1860:361-377 Authors: Mattie S, Kazmirchuk T, Mui J, Vali H, Brett CL

Article GUID: 30317518

The intralumenal fragment pathway mediates ESCRT-independent surface transporter down-regulation.

Author(s): McNally EK, Brett CL

Nat Commun. 2018 12 18;9(1):5358 Authors: McNally EK, Brett CL

Article GUID: 30560896


Title:Visualization of SNARE-Mediated Organelle Membrane Hemifusion by Electron Microscopy.
Authors:Mattie SKazmirchuk TMui JVali HBrett CL
Link:https://www.ncbi.nlm.nih.gov/pubmed/30317518?dopt=Abstract
DOI:10.1007/978-1-4939-8760-3_24
Category:Methods Mol Biol
PMID:30317518
Dept Affiliation: BIOLOGY
1 Department of Biology, Concordia University, Montréal, QC, Canada.
2 Montreal Neurological Hospital and Institute, McGill University, Montréal, QC, Canada.
3 Facility for Electron Microscopy Research, Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada.
4 Department of Biology, Concordia University, Montréal, QC, Canada. christopher.brett@concordia.ca.

Description:

Visualization of SNARE-Mediated Organelle Membrane Hemifusion by Electron Microscopy.

Methods Mol Biol. 2019;1860:361-377

Authors: Mattie S, Kazmirchuk T, Mui J, Vali H, Brett CL

Abstract

SNARE-mediated membrane fusion is required for membrane trafficking as well as organelle biogenesis and homeostasis. The membrane fusion reaction involves sequential formation of hemifusion intermediates, whereby lipid monolayers partially mix on route to complete bilayer merger. Studies of the Saccharomyces cerevisiae lysosomal vacuole have revealed many of the fundamental mechanisms that drive the membrane fusion process, as well as features unique to organelle fusion. However, until recently, it has not been amenable to electron microscopy methods that have been invaluable for studying hemifusion in other model systems. Herein, we describe a method to visualize hemifusion intermediates during homotypic vacuole membrane fusion in vitro by transmission electron microscopy (TEM), electron tomography, and cryogenic electron microscopy (cryoEM). This method facilitates acquisition of invaluable ultrastructural data needed to comprehensively understand how fusogenic lipids and proteins contribute to SNARE-mediated membrane fusion-by-hemifusion and the unique features of organelle versus small-vesicle fusion.

PMID: 30317518 [PubMed - indexed for MEDLINE]