Keyword search (3,448 papers available)


Discovery and Expression of Thermostable LPMOs from Thermophilic Fungi for Producing Efficient Lignocellulolytic Enzyme Cocktails.

Author(s): Agrawal D, Basotra N, Balan V, Tsang A, Chadha BS

Appl Biochem Biotechnol. 2019 Dec 02;: Authors: Agrawal D, Basotra N, Balan V, Tsang A, Chadha BS

Article GUID: 31792786

Malbranchea cinnamomea: A thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes.

Author(s): Mahajan C, Basotra N, Singh S, Di Falco M, Tsang A, Chadha BS

Bioresour Technol. 2016 Jan;200:55-63 Authors: Mahajan C, Basotra N, Singh S, Di Falco M, Tsang A, Chadha BS

Article GUID: 26476165

Evaluation of secretome of highly efficient lignocellulolytic Penicillium sp. Dal 5 isolated from rhizosphere of conifers.

Author(s): Rai R, Kaur B, Singh S, Di Falco M, Tsang A, Chadha BS

Bioresour Technol. 2016 Sep;216:958-67 Authors: Rai R, Kaur B, Singh S, Di Falco M, Tsang A, Chadha BS

Article GUID: 27341464

Expression of catalytically efficient xylanases from thermophilic fungus Malbranchea cinnamomea for synergistically enhancing hydrolysis of lignocellulosics.

Author(s): Basotra N, Joshi S, Satyanarayana T, Pati PK, Tsang A, Chadha BS

Int J Biol Macromol. 2018 Mar;108:185-192 Authors: Basotra N, Joshi S, Satyanarayana T, Pati PK, Tsang A, Chadha BS

Article GUID: 29174359

Thermostable xylanases from thermophilic fungi and bacteria: Current perspective.

Author(s): Chadha BS, Kaur B, Basotra N, Tsang A, Pandey A

Bioresour Technol. 2019 Apr;277:195-203 Authors: Chadha BS, Kaur B, Basotra N, Tsang A, Pandey A

Article GUID: 30679061


Title:Discovery and Expression of Thermostable LPMOs from Thermophilic Fungi for Producing Efficient Lignocellulolytic Enzyme Cocktails.
Authors:Agrawal DBasotra NBalan VTsang AChadha BS
Link:https://www.ncbi.nlm.nih.gov/pubmed/31792786?dopt=Abstract
DOI:10.1007/s12010-019-03198-5
Category:Appl Biochem Biotechnol
PMID:31792786
Dept Affiliation: GENOMICS
1 Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
2 Department Engineering Technology, Biotechnology Program, College of Technology, University of Houston, Houston, TX, 77004, USA.
3 Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada.
4 Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India. chadhabs@yahoo.com.

Description:

Discovery and Expression of Thermostable LPMOs from Thermophilic Fungi for Producing Efficient Lignocellulolytic Enzyme Cocktails.

Appl Biochem Biotechnol. 2019 Dec 02;:

Authors: Agrawal D, Basotra N, Balan V, Tsang A, Chadha BS

Abstract

In this study, two novel thermostable lytic polysaccharide monooxygenases (LPMOs) were cloned from thermophilic fungus Scytalidium thermophilum (PMO9D_SCYTH) and Malbranchea cinnamomea (PMO9D_MALCI) and expressed in the methylotrophic yeast Pichia pastoris X33. The purified PMO9D_SCYTH was active at 60 °C (t1/2 = 60.58 h, pH 7.0), whereas, PMO9D_MALCI was optimally active at 50 °C (t1/2 = 144 h, pH 7.0). The respective catalytic efficiency (kcat/Km) of PMO9D_SCYTH and PMO9D_MALCI determined against avicel in presence of H2O2 was (6.58 × 10-3 and 1.79 × 10-3 mg-1 ml min-1) and carboxy-methylcellulose (CMC) (1.52 × 10-1 and 2.62 × 10-2 mg-1 ml min-1). The HRMS analysis of products obtained after hydrolysis of avicel and CMC showed the presence of both C1 and C4 oxidized oligosaccharides, in addition to phylogenetic tree constructed with other characterized type 1 and 3 LPMOs demonstrated that both LPMOs belongs to type-3 family of AA9s. The release of sugars during saccharification of acid/alkali pretreated sugarcane bagasse and rice straw was enhanced upon replacing one part of commercial enzyme Cellic CTec2 with these LPMOs.

PMID: 31792786 [PubMed - as supplied by publisher]