Keyword search (3,448 papers available)


Penicillium subrubescens adapts its enzyme production to the composition of plant biomass.

Author(s): Dilokpimol A, Peng M, Di Falco M, Chin A Woeng T, Hegi RMW, Granchi Z, Tsang A, Hildén KS, Mäkelä MR, de Vries RP

Bioresour Technol. 2020 May 05;311:123477 Authors: Dilokpimol A, Peng M, Di Falco M, Chin A Woeng T, Hegi RMW, Granchi Z, Tsang A, Hildén KS, Mäkelä MR, de Vries RP

Article GUID: 32408196

Evidence for ligninolytic activity of the ascomycete fungus Podospora anserina.

Author(s): van Erven G, Kleijn AF, Patyshakuliyeva A, Di Falco M, Tsang A, de Vries RP, van Berkel WJH, Kabel MA

Biotechnol Biofuels. 2020;13:75 Authors: van Erven G, Kleijn AF, Patyshakuliyeva A, Di Falco M, Tsang A, de Vries RP, van Berkel WJH, Kabel MA

Article GUID: 32322305

Evolutionary adaptation of Aspergillus niger for increased ferulic acid tolerance.

Author(s): Lubbers RJM, Liwanag AJ, Peng M, Dilokpimol A, Benoit-Gelber I, de Vries RP

J Appl Microbiol. 2019 Nov 01;: Authors: Lubbers RJM, Liwanag AJ, Peng M, Dilokpimol A, Benoit-Gelber I, de Vries RP

Article GUID: 31674709

Glucose-mediated repression of plant biomass utilization in the white-rot fungus Dichomitus squalens.

Author(s): Daly P, Peng M, Di Falco M, Lipzen A, Wang M, Ng V, Grigoriev IV, Tsang A, Mäkelä MR, de Vries RP

Appl Environ Microbiol. 2019 Oct 04;: Authors: Daly P, Peng M, Di Falco M, Lipzen A, Wang M, Ng V, Grigoriev IV, Tsang A, Mäkelä MR, de Vries RP

Article GUID: 31585998

Closely related fungi employ diverse enzymatic strategies to degrade plant biomass.

Author(s): Benoit I, Culleton H, Zhou M, DiFalco M, Aguilar-Osorio G, Battaglia E, Bouzid O, Brouwer CPJM, El-Bushari HBO, Coutinho PM, Gruben BS, Hild...

Biotechnol Biofuels. 2015;8:107 Authors: Benoit I, Culleton H, Zhou M, DiFalco M, Aguilar-Osorio G, Battaglia E, Bouzid O, Brouwer CPJM, El-Bushari HBO, Coutinho PM, Gruben BS, Hildén KS, Hou...

Article GUID: 26236396

Secretion of small proteins is species-specific within Aspergillus sp.

Author(s): Valette N, Benoit-Gelber I, Falco MD, Wiebenga A, de Vries RP, Gelhaye E, Morel-Rouhier M

Microb Biotechnol. 2017 03;10(2):323-329 Authors: Valette N, Benoit-Gelber I, Falco MD, Wiebenga A, de Vries RP, Gelhaye E, Morel-Rouhier M

Article GUID: 27153937

The molecular response of the white-rot fungus Dichomitus squalens to wood and non-woody biomass as examined by transcriptome and exoproteome analyses.

Author(s): Rytioja J, Hildén K, Di Falco M, Zhou M, Aguilar-Pontes MV, Sietiö OM, Tsang A, de Vries RP, Mäkelä MR

Environ Microbiol. 2017 03;19(3):1237-1250 Authors: Rytioja J, Hildén K, Di Falco M, Zhou M, Aguilar-Pontes MV, Sietiö OM, Tsang A, de Vries RP, Mäkelä MR

Article GUID: 28028889

The pathway intermediate 2-keto-3-deoxy-L-galactonate mediates the induction of genes involved in D-galacturonic acid utilization in Aspergillus niger.

Author(s): Alazi E, Khosravi C, Homan TG, du Pré S, Arentshorst M, Di Falco M, Pham TTM, Peng M, Aguilar-Pontes MV, Visser J, Tsang A, de Vries RP, Ram AFJ

FEBS Lett. 2017 05;591(10):1408-1418 Authors: Alazi E, Khosravi C, Homan TG, du Pré S, Arentshorst M, Di Falco M, Pham TTM, Peng M, Aguilar-Pontes MV, Visser J, Tsang A, de Vries RP, Ram AFJ

Article GUID: 28417461

Expression-based clustering of CAZyme-encoding genes of Aspergillus niger.

Author(s): Gruben BS, Mäkelä MR, Kowalczyk JE, Zhou M, Benoit-Gelber I, De Vries RP

BMC Genomics. 2017 Nov 23;18(1):900 Authors: Gruben BS, Mäkelä MR, Kowalczyk JE, Zhou M, Benoit-Gelber I, De Vries RP

Article GUID: 29169319

Introduction: Overview of Fungal Genomics.

Author(s): de Vries RP, Grigoriev IV, Tsang A

Methods Mol Biol. 2018;1775:1-7 Authors: de Vries RP, Grigoriev IV, Tsang A

Article GUID: 29876804

Evolutionary Adaptation to Generate Mutants.

Author(s): de Vries RP, Lubbers R, Patyshakuliyeva A, Wiebenga A, Benoit-Gelber I

Methods Mol Biol. 2018;1775:133-137 Authors: de Vries RP, Lubbers R, Patyshakuliyeva A, Wiebenga A, Benoit-Gelber I

Article GUID: 29876815

Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri.

Author(s): Vesth TC, Nybo JL, Theobald S, Frisvad JC, Larsen TO, Nielsen KF, Hoof JB, Brandl J, Salamov A, Riley R, Gladden JM, Phatale P, Nielsen MT, ...

Nat Genet. 2018 12;50(12):1688-1695 Authors: Vesth TC, Nybo JL, Theobald S, Frisvad JC, Larsen TO, Nielsen KF, Hoof JB, Brandl J, Salamov A, Riley R, Gladden JM, Phatale P, Nielsen MT, Lyhne EK, K...

Article GUID: 30349117

The obligate alkalophilic soda-lake fungus Sodiomyces alkalinus has shifted to a protein diet.

Author(s): Grum-Grzhimaylo AA, Falkoski DL, van den Heuvel J, Valero-Jiménez CA, Min B, Choi IG, Lipzen A, Daum CG, Aanen DK, Tsang A, Henrissat B, Bil...

Mol Ecol. 2018 12;27(23):4808-4819 Authors: Grum-Grzhimaylo AA, Falkoski DL, van den Heuvel J, Valero-Jiménez CA, Min B, Choi IG, Lipzen A, Daum CG, Aanen DK, Tsang A, Henrissat B, Bilanenko ...

Article GUID: 30368956

The gold-standard genome of Aspergillus niger NRRL 3 enables a detailed view of the diversity of sugar catabolism in fungi.

Author(s): Aguilar-Pontes MV, Brandl J, McDonnell E, Strasser K, Nguyen TTM, Riley R, Mondo S, Salamov A, Nybo JL, Vesth TC, Grigoriev IV, Andersen MR,...

Stud Mycol. 2018 Sep;91:61-78 Authors: Aguilar-Pontes MV, Brandl J, McDonnell E, Strasser K, Nguyen TTM, Riley R, Mondo S, Salamov A, Nybo JL, Vesth TC, Grigoriev IV, Andersen MR, Tsang A, de Vrie...

Article GUID: 30425417

The presence of trace components significantly broadens the molecular response of Aspergillus niger to guar gum.

Author(s): Coconi Linares N, Di Falco M, Benoit-Gelber I, Gruben BS, Peng M, Tsang A, Mäkelä MR, de Vries RP

N Biotechnol. 2019 Jul 25;51:57-66 Authors: Coconi Linares N, Di Falco M, Benoit-Gelber I, Gruben BS, Peng M, Tsang A, Mäkelä MR, de Vries RP

Article GUID: 30797054


Title:Evidence for ligninolytic activity of the ascomycete fungus Podospora anserina.
Authors:van Erven GKleijn AFPatyshakuliyeva ADi Falco MTsang Ade Vries RPvan Berkel WJHKabel MA
Link:https://www.ncbi.nlm.nih.gov/pubmed/32322305?dopt=Abstract
DOI:10.1186/s13068-020-01713-z
Category:Biotechnol Biofuels
PMID:32322305
Dept Affiliation: GENOMICS
1 1Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
2 2Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
3 3Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6 Canada.

Description:

Evidence for ligninolytic activity of the ascomycete fungus Podospora anserina.

Biotechnol Biofuels. 2020;13:75

Authors: van Erven G, Kleijn AF, Patyshakuliyeva A, Di Falco M, Tsang A, de Vries RP, van Berkel WJH, Kabel MA

Abstract

Background: The ascomycete fungus Podospora anserina has been appreciated for its targeted carbohydrate-active enzymatic arsenal. As a late colonizer of herbivorous dung, the fungus acts specifically on the more recalcitrant fraction of lignocellulose and this lignin-rich biotope might have resulted in the evolution of ligninolytic activities. However, the lignin-degrading abilities of the fungus have not been demonstrated by chemical analyses at the molecular level and are, thus far, solely based on genome and secretome predictions. To evaluate whether P. anserina might provide a novel source of lignin-active enzymes to tap into for potential biotechnological applications, we comprehensively mapped wheat straw lignin during fungal growth and characterized the fungal secretome.

Results: Quantitative 13C lignin internal standard py-GC-MS analysis showed substantial lignin removal during the 7 days of fungal growth (24% w/w), though carbohydrates were preferably targeted (58% w/w removal). Structural characterization of residual lignin by using py-GC-MS and HSQC NMR analyses demonstrated that Ca-oxidized substructures significantly increased through fungal action, while intact ß-O-4' aryl ether linkages, p-coumarate and ferulate moieties decreased, albeit to lesser extents than observed for the action of basidiomycetes. Proteomic analysis indicated that the presence of lignin induced considerable changes in the secretome of P. anserina. This was particularly reflected in a strong reduction of cellulases and galactomannanases, while H2O2-producing enzymes clearly increased. The latter enzymes, together with laccases, were likely involved in the observed ligninolysis.

Conclusions: For the first time, we provide unambiguous evidence for the ligninolytic activity of the ascomycete fungus P. anserina and expand the view on its enzymatic repertoire beyond carbohydrate degradation. Our results can be of significance for the development of biological lignin conversion technologies by contributing to the quest for novel lignin-active enzymes and organisms.

PMID: 32322305 [PubMed]