Keyword search (3,448 papers available)


Tuning the redox potential of the primary electron donor in bacterial reaction centers by manganese binding and light-induced structural changes.

Author(s): Deshmukh SS, Kálmán L

Biochim Biophys Acta Bioenerg. 2020 Aug 07;:148285 Authors: Deshmukh SS, Kálmán L

Article GUID: 32777306

Light-induced conformational changes in photosynthetic reaction centers: dielectric relaxation in the vicinity of the dimer.

Author(s): Deshmukh SS, Williams JC, Allen JP, Kálmán L

Biochemistry. 2011 Jan 25;50(3):340-8 Authors: Deshmukh SS, Williams JC, Allen JP, Kálmán L

Article GUID: 21141811

Light-induced conformational changes in photosynthetic reaction centers: redox-regulated proton pathway near the dimer.

Author(s): Deshmukh SS, Williams JC, Allen JP, Kálmán L

Biochemistry. 2011 Apr 26;50(16):3321-31 Authors: Deshmukh SS, Williams JC, Allen JP, Kálmán L

Article GUID: 21410139

Light-induced conformational changes in photosynthetic reaction centers: impact of detergents and lipids on the electronic structure of the primary electron donor.

Author(s): Deshmukh SS, Akhavein H, Williams JC, Allen JP, Kalman L

Biochemistry. 2011 Jun 14;50(23):5249-62 Authors: Deshmukh SS, Akhavein H, Williams JC, Allen JP, Kalman L

Article GUID: 21561160

Lipid binding to the carotenoid binding site in photosynthetic reaction centers.

Author(s): Deshmukh SS, Tang K, Kálmán L

J Am Chem Soc. 2011 Oct 12;133(40):16309-16 Authors: Deshmukh SS, Tang K, Kálmán L

Article GUID: 21894992

The interaction of streptococcal enolase with canine plasminogen: the role of surfaces in complex formation.

Author(s): Balhara V, Deshmukh SS, Kálmán L, Kornblatt JA

PLoS One. 2014;9(2):e88395 Authors: Balhara V, Deshmukh SS, Kálmán L, Kornblatt JA

Article GUID: 24520380

Low potential manganese ions as efficient electron donors in native anoxygenic bacteria.

Author(s): Deshmukh SS, Protheroe C, Ivanescu MA, Lag S, Kálmán L

Biochim Biophys Acta Bioenerg. 2018 Apr;1859(4):227-233 Authors: Deshmukh SS, Protheroe C, Ivanescu MA, Lag S, Kálmán L

Article GUID: 29355486

The influence of truncating the carboxy-terminal amino acid residues of streptococcal enolase on its ability to interact with canine plasminogen.

Author(s): Deshmukh SS, Kornblatt MJ, Kornblatt JA

PLoS One. 2019;14(1):e0206338 Authors: Deshmukh SS, Kornblatt MJ, Kornblatt JA

Article GUID: 30653526


Title:Low potential manganese ions as efficient electron donors in native anoxygenic bacteria.
Authors:Deshmukh SSProtheroe CIvanescu MALag SKálmán L
Link:https://www.ncbi.nlm.nih.gov/pubmed/29355486?dopt=Abstract
Category:Biochim Biophys Acta Bioenerg
PMID:29355486
Dept Affiliation: PHYSICS
1 Department of Physics, Concordia University, Montreal, QC, Canada.
2 Department of Physics, Concordia University, Montreal, QC, Canada. Electronic address: laszlo.kalman@concordia.ca.

Description:

Low potential manganese ions as efficient electron donors in native anoxygenic bacteria.

Biochim Biophys Acta Bioenerg. 2018 Apr;1859(4):227-233

Authors: Deshmukh SS, Protheroe C, Ivanescu MA, Lag S, Kálmán L

Abstract

Systematic control over molecular driving forces is essential for understanding the natural electron transfer processes as well as for improving the efficiency of the artificial mimics of energy converting enzymes. Oxygen producing photosynthesis uniquely employs manganese ions as rapid electron donors. Introducing this attribute to anoxygenic photosynthesis may identify evolutionary intermediates and provide insights to the energetics of biological water oxidation. This work presents effective environmental methods that substantially and simultaneously tune the redox potentials of manganese ions and the cofactors of a photosynthetic enzyme from native anoxygenic bacteria without the necessity of genetic modification or synthesis. A spontaneous coordination with bis-tris propane lowered the redox potential of the manganese (II) to manganese (III) transition to an unusually low value (~400?mV) at pH?9.4 and allowed its binding to the bacterial reaction center. Binding to a novel buried binding site elevated the redox potential of the primary electron donor, a dimer of bacteriochlorophylls, by up to 92?mV also at pH?9.4 and facilitated the electron transfer that is able to compete with the wasteful charge recombination. These events impaired the function of the natural electron donor and made BTP-coordinated manganese a viable model for an evolutionary alternative.

PMID: 29355486 [PubMed - indexed for MEDLINE]