Keyword search (3,448 papers available)


Penicillium subrubescens adapts its enzyme production to the composition of plant biomass.

Author(s): Dilokpimol A, Peng M, Di Falco M, Chin A Woeng T, Hegi RMW, Granchi Z, Tsang A, Hildén KS, Mäkelä MR, de Vries RP

Bioresour Technol. 2020 May 05;311:123477 Authors: Dilokpimol A, Peng M, Di Falco M, Chin A Woeng T, Hegi RMW, Granchi Z, Tsang A, Hildén KS, Mäkelä MR, de Vries RP

Article GUID: 32408196

Evolutionary adaptation of Aspergillus niger for increased ferulic acid tolerance.

Author(s): Lubbers RJM, Liwanag AJ, Peng M, Dilokpimol A, Benoit-Gelber I, de Vries RP

J Appl Microbiol. 2019 Nov 01;: Authors: Lubbers RJM, Liwanag AJ, Peng M, Dilokpimol A, Benoit-Gelber I, de Vries RP

Article GUID: 31674709


Title:Penicillium subrubescens adapts its enzyme production to the composition of plant biomass.
Authors:Dilokpimol APeng MDi Falco MChin A Woeng THegi RMWGranchi ZTsang AHildén KSMäkelä MRde Vries RP
Link:https://www.ncbi.nlm.nih.gov/pubmed/32408196?dopt=Abstract
DOI:10.1016/j.biortech.2020.123477
Category:Bioresour Technol
PMID:32408196
Dept Affiliation: GENOMICS
1 Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
2 Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke West, H4B 1R6 Montreal, Quebec, Canada.
3 GenomeScan B.V, Plesmanlaan 1/D, 2333 BZ Leiden, The Netherlands.
4 Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
5 Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands. Electronic address: r.devries@wi.knaw.nl.

Description:

Penicillium subrubescens adapts its enzyme production to the composition of plant biomass.

Bioresour Technol. 2020 May 05;311:123477

Authors: Dilokpimol A, Peng M, Di Falco M, Chin A Woeng T, Hegi RMW, Granchi Z, Tsang A, Hildén KS, Mäkelä MR, de Vries RP

Abstract

Penicillium subrubescens is able to degrade a broad range of plant biomass and it has an expanded set of Carbohydrate Active enzyme (CAZyme)-encoding genes in comparison to other Penicillium species. Here we used exoproteome and transcriptome analysis to demonstrate the versatile plant biomass degradation mechanism by P. subrubescens during growth on wheat bran and sugar beet pulp. On wheat bran P. subrubescens degraded xylan main chain and side residues from Day 2 of cultivation, whereas it started to degrade side chains of pectin in sugar beet pulp prior to attacking the main chain on Day 3. In addition, on Day 3 the cellulolytic enzymes were highly increased. Our results confirm that P. subrubescens adapts its enzyme production to the available plant biomass and is a promising new fungal cell factory for the production of CAZymes.

PMID: 32408196 [PubMed - as supplied by publisher]