Keyword search (3,448 papers available)


Reinterpreting the results of the LHC with MadAnalysis 5: uncertainties and higher-luminosity estimates.

Author(s): Araz JY, Frank M, Fuks B

Eur Phys J C Part Fields. 2020;80(6):531 Authors: Araz JY, Frank M, Fuks B

Article GUID: 32587466

Magnetic Monopole Search with the Full MoEDAL Trapping Detector in 13 TeV pp Collisions Interpreted in Photon-Fusion and Drell-Yan Production.

Author(s): Acharya B, Alexandre J, Baines S, Benes P, Bergmann B, Bernabéu J, Bevan A, Branzas H, Campbell M, Cecchini S, Cho YM, de Montigny M, De Roe...

Phys Rev Lett. 2019 Jul 12;123(2):021802 Authors: Acharya B, Alexandre J, Baines S, Benes P, Bergmann B, Bernabéu J, Bevan A, Branzas H, Campbell M, Cecchini S, Cho YM, de Montigny M, De Roec...

Article GUID: 31386510

Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC.

Author(s): Acharya B, Alexandre J, Baines S, Benes P, Bergmann B, Bernabéu J, Branzas H, Campbell M, Caramete L, Cecchini S, de Montigny M, De Roeck A,...

Phys Rev Lett. 2017 Feb 10;118(6):061801 Authors: Acharya B, Alexandre J, Baines S, Benes P, Bergmann B, Bernabéu J, Branzas H, Campbell M, Caramete L, Cecchini S, de Montigny M, De Roeck A, ...

Article GUID: 28234515


Title:Magnetic Monopole Search with the Full MoEDAL Trapping Detector in 13 TeV pp Collisions Interpreted in Photon-Fusion and Drell-Yan Production.
Authors:Acharya BAlexandre JBaines SBenes PBergmann BBernabéu JBevan ABranzas HCampbell MCecchini SCho YMde Montigny MDe Roeck AEllis JREl Sawy MFairbairn MFelea DFrank MHays JHirt AMJanecek JKim DWKorzenev ALacarrère DHLee SCLeroy CLevi GLionti AMamuzic JMargiotta AMauri NMavromatos NEMermod PMieskolainen MMillward LMitsou VAOrava ROstrovskiy IPapavassiliou JParker BPatrizii LPavalas GEPinfold JLPopa VPozzato MPospisil SRaj
Link:https://www.ncbi.nlm.nih.gov/pubmed/31386510?dopt=Abstract
DOI:10.1103/PhysRevLett.123.021802
Category:Phys Rev Lett
PMID:31386510
Dept Affiliation: PHYSICS
1 Theoretical Particle Physics and Cosmology Group, Physics Department, King's College London, United Kingdom.
2 IEAP, Czech Technical University in Prague, Czech Republic.
3 IFIC, Universitat de València-CSIC, Valencia, Spain.
4 School of Physics and Astronomy, Queen Mary University of London, United Kingdom.
5 Institute of Space Science, Bucharest-Magurele, Romania.
6 Experimental Physics Department, CERN, Geneva, Switzerland.
7 INFN, Section of Bologna, Bologna, Italy.
8 Physics Department, Konkuk University, Seoul, Korea.
9 Physics Department, University of Alberta, Edmonton, Alberta, Canada.
10 Theoretical Physics Department, CERN, Geneva, Switzerland.
11 Department of Physics, Concordia University, Montréal, Québec, Canada.
12 Department of Earth Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland-Associate member.
13 Physics Department, Gangneung-Wonju National University, Gangneung, Republic of Korea.
14 Département de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva, Switzerland.
15 Département de Physique, Université de Montréal, Québec, Canada.
16 INFN, Section of Bologna and Department of Physics and Astronomy, University of Bologna, Italy.
17 Physics Department, University of Helsinki, Helsinki, Finland.
18 Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama, USA.
19 Institute for Research in Schools, Canterbury, United Kingdom.
20 Department of Physics, Imperial College London, United Kingdom.
21 Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada.
22 Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA.
23 INFN, CNAF, Bologna, Italy.

Description:

Magnetic Monopole Search with the Full MoEDAL Trapping Detector in 13 TeV pp Collisions Interpreted in Photon-Fusion and Drell-Yan Production.

Phys Rev Lett. 2019 Jul 12;123(2):021802

Authors: Acharya B, Alexandre J, Baines S, Benes P, Bergmann B, Bernabéu J, Bevan A, Branzas H, Campbell M, Cecchini S, Cho YM, de Montigny M, De Roeck A, Ellis JR, El Sawy M, Fairbairn M, Felea D, Frank M, Hays J, Hirt AM, Janecek J, Kim DW, Korzenev A, Lacarrère DH, Lee SC, Leroy C, Levi G, Lionti A, Mamuzic J, Margiotta A, Mauri N, Mavromatos NE, Mermod P, Mieskolainen M, Millward L, Mitsou VA, Orava R, Ostrovskiy I, Papavassiliou J, Parker B, Patrizii L, Pavalas GE, Pinfold JL, Popa V, Pozzato M, Pospisil S, Rajantie A, Ruiz de Austri R, Sahnoun Z, Sakellariadou M, Santra A, Sarkar S, Semenoff G, Shaa A, Sirri G, Sliwa K, Soluk R, Spurio M, Staelens M, Suk M, Tenti M, Togo V, Tuszynski JA, Vento V, Vives O, Vykydal Z, Wall A, Zgura IS, MoEDAL Collaboration

Abstract

MoEDAL is designed to identify new physics in the form of stable or pseudostable highly ionizing particles produced in high-energy Large Hadron Collider (LHC) collisions. Here we update our previous search for magnetic monopoles in Run 2 using the full trapping detector with almost four times more material and almost twice more integrated luminosity. For the first time at the LHC, the data were interpreted in terms of photon-fusion monopole direct production in addition to the Drell-Yan-like mechanism. The MoEDAL trapping detector, consisting of 794 kg of aluminum samples installed in the forward and lateral regions, was exposed to 4.0??fb^{-1} of 13 TeV proton-proton collisions at the LHCb interaction point and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges equal to or above the Dirac charge are excluded in all samples. Monopole spins 0, ½, and 1 are considered and both velocity-independent and-dependent couplings are assumed. This search provides the best current laboratory constraints for monopoles with magnetic charges ranging from two to five times the Dirac charge.

PMID: 31386510 [PubMed - in process]