Keyword search (3,168 papers available)


Fast oscillations >40 Hz localize the epileptogenic zone: An electrical source imaging study using high-density electroencephalography.

Author(s): Avigdor T, Abdallah C, von Ellenrieder N, Hedrich T, Rubino A, Lo Russo G, Bernhardt B, Nobili L, Grova C, Frauscher B...

OBJECTIVE: Fast Oscillations (FO) >40 Hz are a promising biomarker of the epileptogenic zone (EZ). Evidence using scalp electroencephalography (EEG) remains scarce. We assessed if electrical source...

Article GUID: 33450578

Effects of Independent Component Analysis on Magnetoencephalography Source Localization in Pre-surgical Frontal Lobe Epilepsy Patients

Author(s): Pellegrino G, Xu M, Alkuwaiti A, Porras-Bettancourt M, Abbas G, Lina JM, Grova C, Kobayashi E,...

Objective: Magnetoencephalography source imaging (MSI) of interictal epileptiform discharges (IED) is a useful presurgical tool in the evaluation of drug-resistant frontal lobe epilepsy (FLE) patie...

Article GUID: 32582009

Accuracy and spatial properties of distributed magnetic source imaging techniques in the investigation of focal epilepsy patients.

Author(s): Pellegrino G, Hedrich T, Porras-Bettancourt M, Lina JM, Aydin Ü, Hall J, Grova C, Kobayashi E

Hum Brain Mapp. 2020 May 09;: Authors: Pellegrino G, Hedrich T, Porras-Bettancourt M, Lina JM, Aydin Ü, Hall J, Grova C, Kobayashi E

Article GUID: 32386115

Magnetoencephalography resting state connectivity patterns as indicatives of surgical outcome in epilepsy patients.

Author(s): Aydin Ü, Pellegrino G, Bin Ka'b Ali O, Abdallah C, Dubeau F, Lina JM, Kobayashi E, Grova C

J Neural Eng. 2020 Mar 18;: Authors: Aydin Ü, Pellegrino G, Bin Ka'b Ali O, Abdallah C, Dubeau F, Lina JM, Kobayashi E, Grova C

Article GUID: 32191632

Inferior Longitudinal Fasciculus' Role in Visual Processing and Language Comprehension: A Combined MEG-DTI Study.

Author(s): Shin J, Rowley J, Chowdhury R, Jolicoeur P, Klein D, Grova C, Rosa-Neto P, Kobayashi E

Front Neurosci. 2019;13:875 Authors: Shin J, Rowley J, Chowdhury R, Jolicoeur P, Klein D, Grova C, Rosa-Neto P, Kobayashi E

Article GUID: 31507359

Differences in MEG and EEG power-law scaling explained by a coupling between spatial coherence and frequency: a simulation study.

Author(s): Bénar CG, Grova C, Jirsa VK, Lina JM

J Comput Neurosci. 2019 Jul 11;: Authors: Bénar CG, Grova C, Jirsa VK, Lina JM

Article GUID: 31292816

Detection of abnormal resting-state networks in individual patients suffering from focal epilepsy: an initial step toward individual connectivity assessment.

Author(s): Dansereau CL, Bellec P, Lee K, Pittau F, Gotman J, Grova C

Front Neurosci. 2014;8:419 Authors: Dansereau CL, Bellec P, Lee K, Pittau F, Gotman J, Grova C

Article GUID: 25565949

Localization Accuracy of Distributed Inverse Solutions for Electric and Magnetic Source Imaging of Interictal Epileptic Discharges in Patients with Focal Epilepsy.

Author(s): Heers M, Chowdhury RA, Hedrich T, Dubeau F, Hall JA, Lina JM, Grova C, Kobayashi E

Brain Topogr. 2016 Jan;29(1):162-81 Authors: Heers M, Chowdhury RA, Hedrich T, Dubeau F, Hall JA, Lina JM, Grova C, Kobayashi E

Article GUID: 25609211

MEG-EEG Information Fusion and Electromagnetic Source Imaging: From Theory to Clinical Application in Epilepsy.

Author(s): Chowdhury RA, Zerouali Y, Hedrich T, Heers M, Kobayashi E, Lina JM, Grova C

Brain Topogr. 2015 Nov;28(6):785-812 Authors: Chowdhury RA, Zerouali Y, Hedrich T, Heers M, Kobayashi E, Lina JM, Grova C

Article GUID: 26016950

Detection and Magnetic Source Imaging of Fast Oscillations (40-160 Hz) Recorded with Magnetoencephalography in Focal Epilepsy Patients.

Author(s): von Ellenrieder N, Pellegrino G, Hedrich T, Gotman J, Lina JM, Grova C, Kobayashi E

Brain Topogr. 2016 Mar;29(2):218-31 Authors: von Ellenrieder N, Pellegrino G, Hedrich T, Gotman J, Lina JM, Grova C, Kobayashi E

Article GUID: 26830767

Intracranial EEG potentials estimated from MEG sources: A new approach to correlate MEG and iEEG data in epilepsy.

Author(s): Grova C, Aiguabella M, Zelmann R, Lina JM, Hall JA, Kobayashi E

Hum Brain Mapp. 2016 May;37(5):1661-83 Authors: Grova C, Aiguabella M, Zelmann R, Lina JM, Hall JA, Kobayashi E

Article GUID: 26931511

SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.

Author(s): Lee K, Lina JM, Gotman J, Grova C

Neuroimage. 2016 07 01;134:434-449 Authors: Lee K, Lina JM, Gotman J, Grova C

Article GUID: 27046111

The movement time analyser task investigated with functional near infrared spectroscopy: an ecologic approach for measuring hemodynamic response in the motor system.

Author(s): Vasta R, Cerasa A, Gramigna V, Augimeri A, Olivadese G, Pellegrino G, Martino I, Machado A, Cai Z, Caracciolo M, Grova C, Quattrone A

Aging Clin Exp Res. 2017 Apr;29(2):311-318 Authors: Vasta R, Cerasa A, Gramigna V, Augimeri A, Olivadese G, Pellegrino G, Martino I, Machado A, Cai Z, Caracciolo M, Grova C, Quattrone A

Article GUID: 27055849

Source localization of the seizure onset zone from ictal EEG/MEG data.

Author(s): Pellegrino G, Hedrich T, Chowdhury R, Hall JA, Lina JM, Dubeau F, Kobayashi E, Grova C

Hum Brain Mapp. 2016 07;37(7):2528-46 Authors: Pellegrino G, Hedrich T, Chowdhury R, Hall JA, Lina JM, Dubeau F, Kobayashi E, Grova C

Article GUID: 27059157

Simulation and Validation in Brain Image Analysis.

Author(s): Tohka J, Bellec P, Grova C, Reilhac A

Comput Intell Neurosci. 2016;2016:1041058 Authors: Tohka J, Bellec P, Grova C, Reilhac A PMID: 27433159 [PubMed - indexed for MEDLINE]

Article GUID: 27433159

Zoomed MRI Guided by Combined EEG/MEG Source Analysis: A Multimodal Approach for Optimizing Presurgical Epilepsy Work-up and its Application in a Multi-focal Epilepsy Patient Case Study.

Author(s): Aydin Ü, Rampp S, Wollbrink A, Kugel H, Cho J-, Knösche TR, Grova C, Wellmer J, Wolters CH

Brain Topogr. 2017 Jul;30(4):417-433 Authors: Aydin Ü, Rampp S, Wollbrink A, Kugel H, Cho J-, Knösche TR, Grova C, Wellmer J, Wolters CH

Article GUID: 28510905

Clinical yield of magnetoencephalography distributed source imaging in epilepsy: A comparison with equivalent current dipole method.

Author(s): Pellegrino G, Hedrich T, Chowdhury RA, Hall JA, Dubeau F, Lina JM, Kobayashi E, Grova C

Hum Brain Mapp. 2018 01;39(1):218-231 Authors: Pellegrino G, Hedrich T, Chowdhury RA, Hall JA, Dubeau F, Lina JM, Kobayashi E, Grova C

Article GUID: 29024165

Reproducibility of EEG-MEG fusion source analysis of interictal spikes: Relevance in presurgical evaluation of epilepsy.

Author(s): Chowdhury RA, Pellegrino G, Aydin Ü, Lina JM, Dubeau F, Kobayashi E, Grova C

Hum Brain Mapp. 2018 02;39(2):880-901 Authors: Chowdhury RA, Pellegrino G, Aydin Ü, Lina JM, Dubeau F, Kobayashi E, Grova C

Article GUID: 29164737

Disruption, emergence and lateralization of brain network hubs in mesial temporal lobe epilepsy.

Author(s): Lee K, Khoo HM, Lina JM, Dubeau F, Gotman J, Grova C

Neuroimage Clin. 2018;20:71-84 Authors: Lee K, Khoo HM, Lina JM, Dubeau F, Gotman J, Grova C

Article GUID: 30094158

Optimal positioning of optodes on the scalp for personalized functional near-infrared spectroscopy investigations.

Author(s): Machado A, Cai Z, Pellegrino G, Marcotte O, Vincent T, Lina JM, Kobayashi E, Grova C

J Neurosci Methods. 2018 Nov 01;309:91-108 Authors: Machado A, Cai Z, Pellegrino G, Marcotte O, Vincent T, Lina JM, Kobayashi E, Grova C

Article GUID: 30107210

Automatic classification and removal of structured physiological noise for resting state functional connectivity MRI analysis.

Author(s): Lee K, Khoo HM, Fourcade C, Gotman J, Grova C

Magn Reson Imaging. 2019 05;58:97-107 Authors: Lee K, Khoo HM, Fourcade C, Gotman J, Grova C

Article GUID: 30695721

Cortical reactivations during sleep spindles following declarative learning.

Author(s): Jegou A, Schabus M, Gosseries O, Dahmen B, Albouy G, Desseilles M, Sterpenich V, Phillips C, Maquet P, Grova C, Dang-Vu TT

Neuroimage. 2019 Jul 15;195:104-112 Authors: Jegou A, Schabus M, Gosseries O, Dahmen B, Albouy G, Desseilles M, Sterpenich V, Phillips C, Maquet P, Grova C, Dang-Vu TT

Article GUID: 30928690

Complex patterns of spatially extended generators of epileptic activity: Comparison of source localization methods cMEM and 4-ExSo-MUSIC on high resolution EEG and MEG data.

Author(s): Chowdhury RA, Merlet I, Birot G, Kobayashi E, Nica A, Biraben A, Wendling F, Lina JM, Albera L, Grova C...

Complex patterns of spatially extended generators of epileptic activity: Comparison of source localization methods cMEM and 4-ExSo-MUSIC on high resolution EEG and MEG data.

Neuroimage. 2...

Article GUID: 27561712

Comparison of the spatial resolution of source imaging techniques in high-density EEG and MEG.

Author(s): Hedrich T, Pellegrino G, Kobayashi E, Lina JM, Grova C

Neuroimage. 2017 08 15;157:531-544 Authors: Hedrich T, Pellegrino G, Kobayashi E, Lina JM, Grova C

Article GUID: 28619655


Title:Detection of abnormal resting-state networks in individual patients suffering from focal epilepsy: an initial step toward individual connectivity assessment.
Authors:Dansereau CLBellec PLee KPittau FGotman JGrova C
Link:https://www.ncbi.nlm.nih.gov/pubmed/25565949?dopt=Abstract
Category:Front Neurosci
PMID:25565949
Dept Affiliation: PERFORM
1 Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University Montreal, QC, Canada ; Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University Montreal, QC, Canada ; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Functional Neuroimaging Unit, Université de Montréal Montreal, QC, Canada.
2 Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Functional Neuroimaging Unit, Université de Montréal Montreal, QC, Canada ; Department of Computer Science and Operations Research, University of Montreal Montreal, Quebec, Canada.
3 Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University Montreal, QC, Canada ; Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University Montreal, QC, Canada.
4 Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University Montreal, QC, Canada.
5 Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University Montreal, QC, Canada ; Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University Montreal, QC, Canada ; Physics Department, PERFORM Center, Concordia University Montreal, QC, Canada.

Description:

Detection of abnormal resting-state networks in individual patients suffering from focal epilepsy: an initial step toward individual connectivity assessment.

Front Neurosci. 2014;8:419

Authors: Dansereau CL, Bellec P, Lee K, Pittau F, Gotman J, Grova C

Abstract

The spatial coherence of spontaneous slow fluctuations in the blood-oxygen-level dependent (BOLD) signal at rest is routinely used to characterize the underlying resting-state networks (RSNs). Studies have demonstrated that these patterns are organized in space and highly reproducible from subject to subject. Moreover, RSNs reorganizations have been suggested in pathological conditions. Comparisons of RSNs organization have been performed between groups of subjects but have rarely been applied at the individual level, a step required for clinical application. Defining the notion of modularity as the organization of brain activity in stable networks, we propose Detection of Abnormal Networks in Individuals (DANI) to identify modularity changes at the individual level. The stability of each RSN was estimated using a spatial clustering method: Bootstrap Analysis of Stable Clusters (BASC) (Bellec et al., 2010). Our contributions consisted in (i) providing functional maps of the most stable cores of each networks and (ii) in detecting "abnormal" individual changes in networks organization when compared to a population of healthy controls. DANI was first evaluated using realistic simulated data, showing that focussing on a conservative core size (50% most stable regions) improved the sensitivity to detect modularity changes. DANI was then applied to resting state fMRI data of six patients with focal epilepsy who underwent multimodal assessment using simultaneous EEG/fMRI acquisition followed by surgery. Only patient with a seizure free outcome were selected and the resected area was identified using a post-operative MRI. DANI automatically detected abnormal changes in 5 out of 6 patients, with excellent sensitivity, showing for each of them at least one "abnormal" lateralized network closely related to the epileptic focus. For each patient, we also detected some distant networks as abnormal, suggesting some remote reorganization in the epileptic brain.

PMID: 25565949 [PubMed]