Keyword search (3,448 papers available)


The effect of step-feeding distribution ratio on high concentration perchlorate removal performance in ABR system with heterotrophic combined sulfur autotrophic process.

Author(s): Li H, Li K, Guo J, Chen Z, Han Y, Song Y, Lu C, Hou Y, Zhang D, Zhang Y

In a lab-scale anaerobic baffled reactor (ABR) with eight compartments, the heterotrophic and sulfur autotrophic processes were combined to remove perchlorate. And then, the step-feeding distribution ratio of the heterotrophic perchlorate reduction unit (HP...

Article GUID: 33485237

Acceleration mechanism of bioavailable Fe(Ⅲ) on Te(IV) bioreduction of Shewanella oneidensis MR-1: Promotion of electron generation, electron transfer and energy level.

Author(s): He Y, Guo J, Song Y, Chen Z, Lu C, Han Y, Li H, Hou Y, Zhao R

The release of highly toxic tellurite into the aquatic environment poses significant environmental risks. The acceleration mechanism and tellurium nanorods (TeNPs) characteristics with bioavailable ferric citrate (Fe(III)) were investigated in the tellurite...

Article GUID: 32853890

Effect and ameliorative mechanisms of polyoxometalates on the denitrification under sulfonamide antibiotics stress.

Author(s): Guo H, Chen Z, Lu C, Guo J, Li H, Song Y, Han Y, Hou Y

Bioresour Technol. 2020 Feb 22;305:123073 Authors: Guo H, Chen Z, Lu C, Guo J, Li H, Song Y, Han Y, Hou Y

Article GUID: 32145698

Effect of dissolved oxygen on simultaneous removal of ammonia, nitrate and phosphorus via biological aerated filter with sulfur and pyrite as composite fillers.

Author(s): Li Y, Guo J, Li H, Song Y, Chen Z, Lu C, Han Y, Hou Y

Bioresour Technol. 2019 Oct 28;296:122340 Authors: Li Y, Guo J, Li H, Song Y, Chen Z, Lu C, Han Y, Hou Y

Article GUID: 31704601

Photosystem Biogenesis Is Localized to the Translation Zone in the Chloroplast of Chlamydomonas.

Author(s): Sun Y, Valente-Paterno MI, Bakhtiari S, Law C, Zhan Y, Zerges W

Photosystem Biogenesis Is Localized to the Translation Zone in the Chloroplast of Chlamydomonas.

Plant Cell. 2019 Oct 07;:

Authors: Sun Y, Valente-Paterno MI, Bakhtiari S, Law C, Zhan Y, Zerges W

Abstract
Intracellular pro...

Article GUID: 31591163

Enhanced denitrification performance and biocatalysis mechanisms of polyoxometalates as environmentally-friendly inorganic redox mediators.

Author(s): Guo H, Chen Z, Guo J, Lu C, Song Y, Han Y, Li H, Hou Y

Bioresour Technol. 2019 Jul 16;291:121816 Authors: Guo H, Chen Z, Guo J, Lu C, Song Y, Han Y, Li H, Hou Y

Article GUID: 31344631

Biogenic membranes of the chloroplast in Chlamydomonas reinhardtii.

Author(s): Schottkowski M, Peters M, Zhan Y, Rifai O, Zhang Y, Zerges W

Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19286-91 Authors: Schottkowski M, Peters M, Zhan Y, Rifai O, Zhang Y, Zerges W

Article GUID: 23129655

Localized control of oxidized RNA.

Author(s): Zhan Y, Dhaliwal JS, Adjibade P, Uniacke J, Mazroui R, Zerges W

J Cell Sci. 2015 Nov 15;128(22):4210-9 Authors: Zhan Y, Dhaliwal JS, Adjibade P, Uniacke J, Mazroui R, Zerges W

Article GUID: 26449969

Air quality modeling for effective environmental management in the mining region.

Author(s): Asif Z, Chen Z, Han Y

J Air Waste Manag Assoc. 2018 Sep;68(9):1001-1014 Authors: Asif Z, Chen Z, Han Y

Article GUID: 29667510

A combined heterotrophic and sulfur-based autotrophic process to reduce high concentration perchlorate via anaerobic baffled reactors: Performance advantages of a step-feeding strategy.

Author(s): Li K, Guo J, Li H, Han Y, Chen Z, Song Y, Xing Y, Zhang C

Bioresour Technol. 2019 May;279:297-306 Authors: Li K, Guo J, Li H, Han Y, Chen Z, Song Y, Xing Y, Zhang C

Article GUID: 30738356


Title:The effect of step-feeding distribution ratio on high concentration perchlorate removal performance in ABR system with heterotrophic combined sulfur autotrophic process.
Authors:Li HLi KGuo JChen ZHan YSong YLu CHou YZhang DZhang Y
Link:https://www.ncbi.nlm.nih.gov/pubmed/33485237
DOI:10.1016/j.jhazmat.2021.125151
Category:J Hazard Mater
PMID:33485237
Dept Affiliation: ENCS
1 Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China.
2 Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China. Electronic address: jianbguo@163.com.
3 Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W. Montreal, Quebec, Canada.
4 CCCC-TDC Harbour Construction Engineering Co., Ltd., Huanggu Dongheng street 8#, Tianjin 300450, China.

Description:

The effect of step-feeding distribution ratio on high concentration perchlorate removal performance in ABR system with heterotrophic combined sulfur autotrophic process.

J Hazard Mater. 2021 Jan 14; 411:125151

Authors: Li H, Li K, Guo J, Chen Z, Han Y, Song Y, Lu C, Hou Y, Zhang D, Zhang Y

Abstract

In a lab-scale anaerobic baffled reactor (ABR) with eight compartments, the heterotrophic and sulfur autotrophic processes were combined to remove perchlorate. And then, the step-feeding distribution ratio of the heterotrophic perchlorate reduction unit (HPR unit) was optimized to achieve efficient removal of high concentration perchlorate. Under the optimized step-feeding distribution ratio, the perchlorate removal efficiency reached to 99.8% with the influent concentration of 1300 mg/L, indicating that the removal performance of step-feeding was better than that of normal-feeding. A mass balance results showed that the perchlorate removal capacity of the C1-C5 compartments were 11.8 ± 0.6, 13.2 ± 0.2, 11.7 ± 1.0, 8.8 ± 0.2 and 9.8 ± 1.0 g/d during the stage VIII, indicating that the step-feeding can effectively relieve pollutant loading of C1 compartment and improve the perchlorate removal capacity of the C2-C5 compartments. Moreover, the high-throughput sequencing analysis showed that bacterial community was significant difference between the HPR and sulfur autotrophic perchlorate removal (SAPR) units. Principal component analysis (PCA) showed that perchlorate removal was more positive correlation with the forward compartments than the posterior compartments of HPR unit. The study confirms that the optimized step-feeding ratio is beneficial to remove the high concentration perchlorate via combining heterotrophic and sulfur autotrophic processes.

PMID: 33485237 [PubMed - as supplied by publisher]