Keyword search (3,448 papers available)


Exploring the use of ceramic disk filter coated with Ag/ZnO nanocomposites as an innovative approach for removing Escherichia coli from household drinking water.

Author(s): Huang J, Huang G, An C, Xin X, Chen X, Zhao Y, Feng R, Xiong W

Chemosphere. 2019 Dec 06;245:125545 Authors: Huang J, Huang G, An C, Xin X, Chen X, Zhao Y, Feng R, Xiong W

Article GUID: 31864067

Saccharification efficiencies of multi-enzyme complexes produced by aerobic fungi.

Author(s): Badhan A, Huang J, Wang Y, Abbott DW, Di Falco M, Tsang A, McAllister T

N Biotechnol. 2018 Nov 25;46:1-6 Authors: Badhan A, Huang J, Wang Y, Abbott DW, Di Falco M, Tsang A, McAllister T

Article GUID: 29803771

New recombinant fibrolytic enzymes for improved in vitro ruminal fiber degradability of barley straw.

Author(s): Ribeiro GO, Badhan A, Huang J, Beauchemin KA, Yang W, Wang Y, Tsang A, McAllister TA

J Anim Sci. 2018 Jul 20;: Authors: Ribeiro GO, Badhan A, Huang J, Beauchemin KA, Yang W, Wang Y, Tsang A, McAllister TA

Article GUID: 30053012

Performance of ceramic disk filter coated with nano ZnO for removing Escherichia coli from water in small rural and remote communities of developing regions.

Author(s): Huang J, Huang G, An C, He Y, Yao Y, Zhang P, Shen J

Environ Pollut. 2018 Jul;238:52-62 Authors: Huang J, Huang G, An C, He Y, Yao Y, Zhang P, Shen J

Article GUID: 29544196


Title:Saccharification efficiencies of multi-enzyme complexes produced by aerobic fungi.
Authors:Badhan AHuang JWang YAbbott DWDi Falco MTsang AMcAllister T
Link:https://www.ncbi.nlm.nih.gov/pubmed/29803771?dopt=Abstract
DOI:10.1016/j.nbt.2018.05.003
Category:N Biotechnol
PMID:29803771
Dept Affiliation: GENOMICS
1 Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada.
2 Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China.
3 Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, H4B 1R6, Canada.
4 Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada. Electronic address: tim.mcallister@agr.gc.ca.

Description:

Saccharification efficiencies of multi-enzyme complexes produced by aerobic fungi.

N Biotechnol. 2018 Nov 25;46:1-6

Authors: Badhan A, Huang J, Wang Y, Abbott DW, Di Falco M, Tsang A, McAllister T

Abstract

In the present study, we have characterized high molecular weight multi-enzyme complexes in two commercial enzymes produced by Trichoderma reesei (Spezyme CP) and Penicillium funiculosum (Accellerase XC). We successfully identified 146-1000?kDa complexes using Blue native polyacrylamide gel electrophoresis (BN-PAGE) to fractionate the protein profile in both preparations. Identified complexes dissociated into lower molecular weight constituents when loaded on SDS PAGE. Unfolding of the secondary structure of multi-enzyme complexes with trimethylamine (pH >10) suggested that they were not a result of unspecific protein aggregation. Cellulase (CMCase) profiles of extracts of BN-PAGE fractionated protein bands confirmed cellulase activity within the multi-enzyme complexes. A microassay was used to identify protein bands that promoted high levels of glucose release from barley straw. Those with high saccharification yield were subjected to LC-MS analysis to identify the principal enzymatic activities responsible. The results suggest that secretion of proteins by aerobic fungi leads to the formation of high molecular weight multi-enzyme complexes that display activity against carboxymethyl cellulose and barley straw.

PMID: 29803771 [PubMed - indexed for MEDLINE]