Keyword search (3,448 papers available)


Energy loss associated with in-vitro modeling of mitral annular calcification.

Author(s): Wiener PC, Darwish A, Friend E, Kadem L, Pressman GS

INTRODUCTION: Study aims were to compare hemodynamics and viscous energy dissipation (VED) in 3D printed mitral valves-one replicating a normal valve and the other a valve with severe mitral annular calcification (MAC). Patients with severe MAC develop tran...

Article GUID: 33591991

Proper Orthogonal Decomposition Analysis of the Flow Downstream of a Dysfunctional Bileaflet Mechanical Aortic Valve.

Author(s): Darwish A, Di Labbio G, Saleh W, Kadem L

PURPOSE: Aortic valve replacement remains the only viable solution for symptomatic patients with severe aortic valve stenosis. Despite their improved design and long history of successful operation, bileaflet mechanical heart valves are still associated wit...

Article GUID: 33469847

Impact of Mitral Regurgitation on the Flow in a Model of a Left Ventricle.

Author(s): Papolla C, Darwish A, Kadem L, Rieu R

PURPOSE: Mitral regurgitation (MR) is the second most common valve disease in industrialized countries. Despite its high prevalence, little is known about its impact on the flow dynamics in the left ventricle (LV). Because of the interdependence between val...

Article GUID: 33000444

Color Doppler Splay: A Clue to the Presence of Significant Mitral Regurgitation.

Author(s): Wiener PC, Friend EJ, Bhargav R, Radhakrishnan K, Kadem L, Pressman GS

J Am Soc Echocardiogr. 2020 Jul 22;: Authors: Wiener PC, Friend EJ, Bhargav R, Radhakrishnan K, Kadem L, Pressman GS

Article GUID: 32712051

Effects of Hemodynamic Conditions and Valve Sizing on Leaflet Bending Stress in Self-Expanding Transcatheter Aortic Valve: An In-vitro Study.

Author(s): Stanová V, Zenses AS, Thollon L, Kadem L, Barragan P, Rieu R, Pibarot P

Artif Organs. 2020 Jan 29;: Authors: Stanová V, Zenses AS, Thollon L, Kadem L, Barragan P, Rieu R, Pibarot P

Article GUID: 31995230

Experimental Investigation of the Effect of Heart Rate On Flow in the Left Ventricle in Health and Disease -- Aortic Valve Regurgitation.

Author(s): Di Labbio G, Ben-Assa E, Kadem L

J Biomech Eng. 2019 Nov 01;: Authors: Di Labbio G, Ben-Assa E, Kadem L

Article GUID: 31701119

Jet collisions and vortex reversal in the human left ventricle.

Author(s): Di Labbio G, Kadem L

J Biomech. 2018 09 10;78:155-160 Authors: Di Labbio G, Kadem L

Article GUID: 30049450

Response to letter to the editor: 'Left ventricular flow in the presence of aortic regurgitation'.

Author(s): Di Labbio G, Kadem L

J Biomech. 2019 Apr 18;87:212-214 Authors: Di Labbio G, Kadem L PMID: 30871721 [PubMed - in process]

Article GUID: 30871721

Experimental investigation of the flow downstream of a dysfunctional bileaflet mechanical aortic valve.

Author(s): Darwish A, Di Labbio G, Saleh W, Smadi O, Kadem L

Artif Organs. 2019 May 08;: Authors: Darwish A, Di Labbio G, Saleh W, Smadi O, Kadem L

Article GUID: 31066923


Title:Color Doppler Splay: A Clue to the Presence of Significant Mitral Regurgitation.
Authors:Wiener PCFriend EJBhargav RRadhakrishnan KKadem LPressman GS
Link:https://www.ncbi.nlm.nih.gov/pubmed/32712051
DOI:10.1016/j.echo.2020.05.002
Category:J Am Soc Echocardiogr
PMID:32712051
Dept Affiliation: ENCS
1 Division of Cardiology, Heart and Vascular Institute, Einstein Medical Center, Philadelphia, Pennsylvania.
2 Department of Medicine, Einstein Medical Center, Philadelphia, Pennsylvania.
3 Philips North America Corporation, Andover, Massachusetts.
4 Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, Quebec, Canada.
5 Division of Cardiology, Heart and Vascular Institute, Einstein Medical Center, Philadelphia, Pennsylvania. Electronic address: pressmang@einstein.edu.

Description:

Color Doppler Splay: A Clue to the Presence of Significant Mitral Regurgitation.

J Am Soc Echocardiogr. 2020 Jul 22;:

Authors: Wiener PC, Friend EJ, Bhargav R, Radhakrishnan K, Kadem L, Pressman GS

Abstract

BACKGROUND: The authors describe a previously unreported Doppler signal associated with mitral regurgitation (MR) as imaged using transthoracic echocardiography. Horizontal "splay" of the color Doppler signal along the atrial surface of the valve may indicate significant regurgitation when the MR jet otherwise appears benign.

METHODS: Splay was defined as a nonphysiologic arc of color centered at the point at which the MR jet emerges into the left atrium. The authors present a series of 10 cases of clinically significant MR (moderately severe or severe as defined by transesophageal echocardiography) that were misclassified on transthoracic echocardiography as less than moderate. The splay signal was present on at least one standard transthoracic view in each case. To better characterize the splay signal, two groups were created from existing clinically driven transthoracic echocardiograms: 100 consecutive patients with severe MR and 100 with mild MR.

RESULTS: Splay was present in the majority of severe MR cases (81%) regardless of vendor machine, ejection fraction, or MR etiology. Splay was particularly prevalent among patients with wall-hugging jets (28 of 30 [93%]). In patients with mild MR, splay was present less often (16%), on fewer frames per clip, and had smaller dimensions compared with severe MR. Color scale did not differ between subjects with and those without splay, but color gain was higher when splay was present (P = .04). Machine settings were further explored in a single subject with prominent splay: increasing transducer frequency reduced splay, while increasing color gain increased it.

CONCLUSIONS: The authors describe a new transthoracic echocardiographic sign of MR. Horizontal splay may be a clue to the presence of severe MR when the main body of the jet is out of the imaging plane. Splay is likely generated as a side-lobe artifact due to a high-flux regurgitant jet.

PMID: 32712051 [PubMed - as supplied by publisher]