Keyword search (3,448 papers available)


Distinct features of multivesicular body-lysosome fusion revealed by a new cell-free content-mixing assay.

Author(s): Karim MA, Samyn DR, Mattie S, Brett CL

Traffic. 2018 02;19(2):138-149 Authors: Karim MA, Samyn DR, Mattie S, Brett CL

Article GUID: 29135058

The Na+(K+)/H+ exchanger Nhx1 controls multivesicular body-vacuolar lysosome fusion.

Author(s): Karim MA, Brett CL

Mol Biol Cell. 2018 02 01;29(3):317-325 Authors: Karim MA, Brett CL

Article GUID: 29212874

Rab-Effector-Kinase Interplay Modulates Intralumenal Fragment Formation during Vacuole Fusion.

Author(s): Karim MA, McNally EK, Samyn DR, Mattie S, Brett CL

Dev Cell. 2018 10 08;47(1):80-97.e6 Authors: Karim MA, McNally EK, Samyn DR, Mattie S, Brett CL

Article GUID: 30269949

A Cell-Free Content Mixing Assay for SNARE-Mediated Multivesicular Body-Vacuole Membrane Fusion.

Author(s): Karim MA, Samyn DR, Brett CL

Methods Mol Biol. 2019;1860:289-301 Authors: Karim MA, Samyn DR, Brett CL

Article GUID: 30317513


Title:The Na+(K+)/H+ exchanger Nhx1 controls multivesicular body-vacuolar lysosome fusion.
Authors:Karim MABrett CL
Link:https://www.ncbi.nlm.nih.gov/pubmed/29212874?dopt=Abstract
DOI:10.1091/mbc.E17-08-0496
Category:Mol Biol Cell
PMID:29212874
Dept Affiliation: BIOLOGY
1 Department of Biology, Concordia University, Montréal, QC H4R 1R6, Canada.
2 Department of Biology, Concordia University, Montréal, QC H4R 1R6, Canada christopher.brett@concordia.ca.

Description:

The Na+(K+)/H+ exchanger Nhx1 controls multivesicular body-vacuolar lysosome fusion.

Mol Biol Cell. 2018 02 01;29(3):317-325

Authors: Karim MA, Brett CL

Abstract

Loss-of-function mutations in human endosomal Na+(K+)/H+ exchangers (NHEs) NHE6 and NHE9 are implicated in neurological disorders including Christianson syndrome, autism, and attention deficit and hyperactivity disorder. These mutations disrupt retention of surface receptors within neurons and glial cells by affecting their delivery to lysosomes for degradation. However, the molecular basis of how these endosomal NHEs control endocytic trafficking is unclear. Using Saccharomyces cerevisiae as a model, we conducted cell-free organelle fusion assays to show that transport activity of the orthologous endosomal NHE Nhx1 is important for multivesicular body (MVB)-vacuolar lysosome fusion, the last step of endocytosis required for surface protein degradation. We find that deleting Nhx1 disrupts the fusogenicity of the MVB, not the vacuole, by targeting pH-sensitive machinery downstream of the Rab-GTPase Ypt7 needed for SNARE-mediated lipid bilayer merger. All contributing mechanisms are evolutionarily conserved offering new insight into the etiology of human disorders linked to loss of endosomal NHE function.

PMID: 29212874 [PubMed - indexed for MEDLINE]