Keyword search (3,448 papers available)


Ecosystem-level carbon storage and its links to diversity, structural and environmental drivers in tropical forests of Western Ghats, India.

Author(s): Kothandaraman S, Dar JA, Sundarapandian S, Dayanandan S, Khan ML

Sci Rep. 2020 Aug 10;10(1):13444 Authors: Kothandaraman S, Dar JA, Sundarapandian S, Dayanandan S, Khan ML

Article GUID: 32778785

The dark cloud with a silver lining: Assessing the impact of the SARS COVID-19 pandemic on the global environment.

Author(s): Lal P, Kumar A, Kumar S, Kumari S, Saikia P, Dayanandan A, Adhikari D, Khan ML

Sci Total Environ. 2020 May 08;732:139297 Authors: Lal P, Kumar A, Kumar S, Kumari S, Saikia P, Dayanandan A, Adhikari D, Khan ML

Article GUID: 32408041

Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia.

Author(s): Zohner CM, Mo L, Renner SS, Svenning JC, Vitasse Y, Benito BM, Ordonez A, Baumgarten F, Bastin JF, Sebald V, Reich PB, Liang J, Nabuurs GJ, ...

Late-spring frosts (LSFs) affect the performance of plants and animals across the world's temperate and boreal zones, but despite their ecological and economic impact on agriculture and forestr...

Article GUID: 32393624

Genetic structure and diversity of indigenous rice (Oryza sativa) varieties in the Eastern Himalayan region of Northeast India.

Author(s): Choudhury B, Khan ML, Dayanandan S

Springerplus. 2013 Dec;2(1):228 Authors: Choudhury B, Khan ML, Dayanandan S

Article GUID: 23741655

Functional androdioecy in critically endangered Gymnocladus assamicus (Leguminosae) in the Eastern Himalayan Region of Northeast India.

Author(s): Choudhury BI, Khan ML, Dayanandan S

PLoS One. 2014;9(2):e87287 Authors: Choudhury BI, Khan ML, Dayanandan S

Article GUID: 24586267

Patterns of nucleotide diversity and phenotypes of two domestication related genes (OsC1 and Wx) in indigenous rice varieties in Northeast India.

Author(s): Choudhury BI, Khan ML, Dayanandan S

BMC Genet. 2014 Jun 16;15:71 Authors: Choudhury BI, Khan ML, Dayanandan S

Article GUID: 24935343

Genetic relatedness among indigenous rice varieties in the Eastern Himalayan region based on nucleotide sequences of the Waxy gene.

Author(s): Choudhury BI, Khan ML, Dayanandan S

BMC Res Notes. 2014 Dec 29;7:953 Authors: Choudhury BI, Khan ML, Dayanandan S

Article GUID: 25547027


Title:Genetic structure and diversity of indigenous rice (Oryza sativa) varieties in the Eastern Himalayan region of Northeast India.
Authors:Choudhury BKhan MLDayanandan S
Link:https://www.ncbi.nlm.nih.gov/pubmed/23741655?dopt=Abstract
DOI:10.1186/2193-1801-2-228
Category:Springerplus
PMID:23741655
Dept Affiliation: BIOLOGY
1 Forest and Evolutionary Genomics Laboratory, and Centre for Structural and Functional Genomics, Biology Department, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec H4B 1R6 Canada ; Québec Centre for Biodiversity Sciences, Montréal, QC Canada.

Description:

Genetic structure and diversity of indigenous rice (Oryza sativa) varieties in the Eastern Himalayan region of Northeast India.

Springerplus. 2013 Dec;2(1):228

Authors: Choudhury B, Khan ML, Dayanandan S

Abstract

The Eastern Himalayan region of Northeast (NE) India is home to a large number of indigenous rice varieties, which may serve as a valuable genetic resource for future crop improvement to meet the ever-increasing demand for food production. However, these varieties are rapidly being lost due to changes in land-use and agricultural practices, which favor agronomically improved varieties. A detailed understanding of the genetic structure and diversity of indigenous rice varieties is crucial for efficient utilization of rice genetic resources and for developing suitable conservation strategies. To explore the genetic structure and diversity of rice varieties in NE India, we genotyped 300 individuals of 24 indigenous rice varieties representing sali, boro, jum and glutinous types, 5 agronomically improved varieties, and one wild rice species (O. rufipogon) using seven SSR markers. A total of 85 alleles and a very high level of gene diversity (0.776) were detected among the indigenous rice varieties of the region. Considerable level of genetic variation was found within indigenous varieties whereas improved varieties were monoporphic across all loci. The comparison of genetic diversity among different types of rice revealed that sali type possessed the highest gene diversity (0.747) followed by jum (0.627), glutinous (0.602) and boro (0.596) types of indigenous rice varieties, while the lowest diversity was detected in agronomically improved varieties (0.459). The AMOVA results showed that 66% of the variation was distributed among varieties indicating a very high level of genetic differentiation in rice varieties in the region. Two major genetically defined clusters corresponding to indica and japonica groups were detected in rice varieties of the region. Overall, traditionally cultivated indigenous rice varieties in NE India showed high levels of genetic diversity comparable to levels of genetic diversity reported from wild rice populations in various parts of the world. The efforts for conservation of rice germplasm in NE India should consider saving rice varieties representing different types with specific emphasis given to sali and jum types. The protection against the loss of vast genetic diversity found in indigenous rice varieties in NE India is crucial for maintaining future food security in the changing world.

PMID: 23741655 [PubMed]