Keyword search (3,448 papers available)


tRNAGlu increases the affinity of glutamyl-tRNA synthetase for its inhibitor glutamyl-sulfamoyl-adenosine, an analogue of the aminoacylation reaction intermediate glutamyl-AMP: mechanistic and evolutionary implications.

Author(s): Blais SP, Kornblatt JA, Barbeau X, Bonnaure G, Lagüe P, Chênevert R, Lapointe J

PLoS One. 2015;10(4):e0121043 Authors: Blais SP, Kornblatt JA, Barbeau X, Bonnaure G, Lagüe P, Chênevert R, Lapointe J

Article GUID: 25860020

The Energetics of Streptococcal Enolase Octamer Formation: The Quantitative Contributions of the Last Eight Amino Acids at the Carboxy-Terminus.

Author(s): Kornblatt JA, Quiros V, Kornblatt MJ

PLoS One. 2015;10(8):e0135754 Authors: Kornblatt JA, Quiros V, Kornblatt MJ

Article GUID: 26287818

The interaction of streptococcal enolase with canine plasminogen: the role of surfaces in complex formation.

Author(s): Balhara V, Deshmukh SS, Kálmán L, Kornblatt JA

PLoS One. 2014;9(2):e88395 Authors: Balhara V, Deshmukh SS, Kálmán L, Kornblatt JA

Article GUID: 24520380

The influence of truncating the carboxy-terminal amino acid residues of streptococcal enolase on its ability to interact with canine plasminogen.

Author(s): Deshmukh SS, Kornblatt MJ, Kornblatt JA

PLoS One. 2019;14(1):e0206338 Authors: Deshmukh SS, Kornblatt MJ, Kornblatt JA

Article GUID: 30653526


Title:tRNAGlu increases the affinity of glutamyl-tRNA synthetase for its inhibitor glutamyl-sulfamoyl-adenosine, an analogue of the aminoacylation reaction intermediate glutamyl-AMP: mechanistic and evolutionary implications.
Authors:Blais SPKornblatt JABarbeau XBonnaure GLagüe PChênevert RLapointe J
Link:https://www.ncbi.nlm.nih.gov/pubmed/25860020?dopt=Abstract
DOI:10.1371/journal.pone.0121043
Category:PLoS One
PMID:25860020
Dept Affiliation: GENOMICS
1 Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; The Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Québec, Canada.
2 Department of Biology, Centre for Structural and Functional Genomics, Faculty of Arts and Science, Concordia University, Montréal, Canada.
3 Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; Département de Chimie, Université Laval, Québec, Canada; The Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Québec, Canada.
4 Département de Chimie, Université Laval, Québec, Canada; The Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Québec, Canada.

Description:

tRNAGlu increases the affinity of glutamyl-tRNA synthetase for its inhibitor glutamyl-sulfamoyl-adenosine, an analogue of the aminoacylation reaction intermediate glutamyl-AMP: mechanistic and evolutionary implications.

PLoS One. 2015;10(4):e0121043

Authors: Blais SP, Kornblatt JA, Barbeau X, Bonnaure G, Lagüe P, Chênevert R, Lapointe J

Abstract

For tRNA-dependent protein biosynthesis, amino acids are first activated by aminoacyl-tRNA synthetases (aaRSs) yielding the reaction intermediates aminoacyl-AMP (aa-AMP). Stable analogues of aa-AMP, such as aminoacyl-sulfamoyl-adenosines, inhibit their cognate aaRSs. Glutamyl-sulfamoyl-adenosine (Glu-AMS) is the best known inhibitor of Escherichia coli glutamyl-tRNA synthetase (GluRS). Thermodynamic parameters of the interactions between Glu-AMS and E. coli GluRS were measured in the presence and in the absence of tRNA by isothermal titration microcalorimetry. A significant entropic contribution for the interactions between Glu-AMS and GluRS in the absence of tRNA or in the presence of the cognate tRNAGlu or of the non-cognate tRNAPhe is indicated by the negative values of -T?Sb, and by the negative value of ?Cp. On the other hand, the large negative enthalpy is the dominant contribution to ?Gb in the absence of tRNA. The affinity of GluRS for Glu-AMS is not altered in the presence of the non-cognate tRNAPhe, but the dissociation constant Kd is decreased 50-fold in the presence of tRNAGlu; this result is consistent with molecular dynamics results indicating the presence of an H-bond between Glu-AMS and the 3'-OH oxygen of the 3'-terminal ribose of tRNAGlu in the Glu-AMS•GluRS•tRNAGlu complex. Glu-AMS being a very close structural analogue of Glu-AMP, its weak binding to free GluRS suggests that the unstable Glu-AMP reaction intermediate binds weakly to GluRS; these results could explain why all the known GluRSs evolved to activate glutamate only in the presence of tRNAGlu, the coupling of glutamate activation to its transfer to tRNA preventing unproductive cleavage of ATP.

PMID: 25860020 [PubMed - indexed for MEDLINE]