Keyword search (3,448 papers available)


O4-alkyl-2'-deoxythymidine cross-linked DNA to probe recognition and repair by O6-alkylguanine DNA alkyltransferases.

Author(s): McManus FP, O'Flaherty DK, Noronha AM, Wilds CJ

Org Biomol Chem. 2012 Sep 21;10(35):7078-90 Authors: McManus FP, O'Flaherty DK, Noronha AM, Wilds CJ

Article GUID: 22850722

Preparation of covalently linked complexes between DNA and O(6)-alkylguanine-DNA alkyltransferase using interstrand cross-linked DNA.

Author(s): McManus FP, Khaira A, Noronha AM, Wilds CJ

Bioconjug Chem. 2013 Feb 20;24(2):224-33 Authors: McManus FP, Khaira A, Noronha AM, Wilds CJ

Article GUID: 23347328

Structural basis of interstrand cross-link repair by O6-alkylguanine DNA alkyltransferase.

Author(s): Denisov AY, McManus FP, O'Flaherty DK, Noronha AM, Wilds CJ

Org Biomol Chem. 2017 Oct 11;15(39):8361-8370 Authors: Denisov AY, McManus FP, O'Flaherty DK, Noronha AM, Wilds CJ

Article GUID: 28937154

Altering Residue 134 Confers an Increased Substrate Range of Alkylated Nucleosides to the E. coli OGT Protein.

Author(s): Schoonhoven NM, O'Flaherty DK, McManus FP, Sacre L, Noronha AM, Kornblatt MJ, Wilds CJ

Molecules. 2017 Nov 11;22(11): Authors: Schoonhoven NM, O'Flaherty DK, McManus FP, Sacre L, Noronha AM, Kornblatt MJ, Wilds CJ

Article GUID: 29137116


Title:Preparation of covalently linked complexes between DNA and O(6)-alkylguanine-DNA alkyltransferase using interstrand cross-linked DNA.
Authors:McManus FPKhaira ANoronha AMWilds CJ
Link:https://www.ncbi.nlm.nih.gov/pubmed/23347328?dopt=Abstract
DOI:10.1021/bc300553u
Category:Bioconjug Chem
PMID:23347328
Dept Affiliation: CHEMBIOCHEM
1 Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. West, Montréal, QC, Canada H4B 1R6.

Description:

Preparation of covalently linked complexes between DNA and O(6)-alkylguanine-DNA alkyltransferase using interstrand cross-linked DNA.

Bioconjug Chem. 2013 Feb 20;24(2):224-33

Authors: McManus FP, Khaira A, Noronha AM, Wilds CJ

Abstract

O(6)-alkylguanine-DNA alkyltransferases (AGT) are responsible for the removal of alkylation at both the O(6) atom of guanine and O(4) atom of thymine. AGT homologues show vast substrate differences with respect to the size of the adduct and which alkylated atoms they can restore. The human AGT (hAGT) has poor capabilities for removal of methylation at the O(4) atom of thymidine, which is not the case in most homologues. No structural data are available to explain this poor hAGT repair. We prepared and characterized O(6)G-butylene-O(4)T (XLGT4) and O(6)G-heptylene-O(4)T (XLGT7) interstrand cross-linked (ICL) DNA as probes for hAGT and the Escherichia coli homologues, OGT and Ada-C, for the formation of DNA-AGT covalent complexes. XLGT7 reacted only with hAGT and did so with a cross-linking efficiency of 25%, while XLGT4 was inert to all AGT tested. The hAGT mediated repair of XLGT7 occurred slowly, on the order of hours as opposed to the repair of O(6)-methyl-2'-deoxyguanosine which requires seconds. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the repair reaction revealed the formation of a covalent complex with an observed migration in accordance with a DNA-AGT complex. The identity of this covalent complex, as determined by mass spectrometry, was composed of a heptamethylene bridge between the O(4) atom of thymidine (in an 11-mer DNA strand) to residue Cys145 of hAGT. This procedure can be applied to produce well-defined covalent complexes between AGT with DNA.

PMID: 23347328 [PubMed - indexed for MEDLINE]