Keyword search (3,448 papers available)


Angular variation of electron paramagnetic resonance spectrum: simulation of a polycrystalline EPR spectrum.

Author(s): Misra SK

J Magn Reson. 1999 Mar;137(1):83-92 Authors: Misra SK

Article GUID: 10053135

A rigorous evaluation of spin-Hamiltonian parameters and linewidth from a polycrystalline EPR spectrum.

Author(s): Misra SK

J Magn Reson. 1999 Sep;140(1):179-88 Authors: Misra SK

Article GUID: 10479561

Variable-frequency EPR study of Mn(2+)-doped NH(4)Cl(0.9)I(0.1) single crystal at 9.6, 36, and 249.9 GHz: structural phase transition.

Author(s): Misra SK, Andronenko SI, Rinaldi G, Chand P, Earle KA, Freed JH

J Magn Reson. 2003 Feb;160(2):131-8 Authors: Misra SK, Andronenko SI, Rinaldi G, Chand P, Earle KA, Freed JH

Article GUID: 12615154

A variable temperature EPR study of Mn(2+)-doped NH(4)Cl(0.9)I(0.1) single crystal at 170 GHz: zero-field splitting parameter and its absolute sign.

Author(s): Misra SK, Andronenko SI, Chand P, Earle KA, Paschenko SV, Freed JH

J Magn Reson. 2005 Jun;174(2):265-9 Authors: Misra SK, Andronenko SI, Chand P, Earle KA, Paschenko SV, Freed JH

Article GUID: 15862243

Exchange-mediated spin-lattice relaxation of Fe3+ ions in borate glasses.

Author(s): Misra SK, Pilbrow JR

J Magn Reson. 2007 Mar;185(1):38-41 Authors: Misra SK, Pilbrow JR

Article GUID: 17140823

Simulation of slow-motion CW EPR spectrum using stochastic Liouville equation for an electron spin coupled to two nuclei with arbitrary spins: matrix elements of the Liouville superoperator.

Author(s): Misra SK

J Magn Reson. 2007 Nov;189(1):59-77 Authors: Misra SK

Article GUID: 17881269

Calculation of Double-Quantum-Coherence Two-dimensional Spectra: Distance Measurements and Orientational Correlations.

Author(s): Misra SK, Borbat PP, Freed JH

Appl Magn Reson. 2009 Dec 01;36(2-4):237-258 Authors: Misra SK, Borbat PP, Freed JH

Article GUID: 20161423

A 236-GHz Fe EPR STUDY OF NANO-PARTICLES OF THE FERRO-MAGNETIC ROOM-TEMPERATURE SEMICONDUCTOR Sn(1-x)Fe(x)O(2)(x=0.005).

Author(s): Misra SK, Andronenko SI, Punnoose A, Tipikin D, Freed JH

Appl Magn Reson. 2009 Dec 01;36(2):291-295 Authors: Misra SK, Andronenko SI, Punnoose A, Tipikin D, Freed JH

Article GUID: 20161547

A multifrequency EPR study of Fe2+ and Mn2+ ions in a ZnSiF(6).6H2O single crystal at liquid-helium temperatures.

Author(s): Misra SK, Diehl S, Tipikin D, Freed JH

J Magn Reson. 2010 Jul;205(1):14-22 Authors: Misra SK, Diehl S, Tipikin D, Freed JH

Article GUID: 20395160

Theory of EPR lineshape in samples concentrated in paramagnetic spins: effect of enhanced internal magnetic field on high-field high-frequency (HFHF) EPR lineshape.

Author(s): Misra SK, Diehl S

J Magn Reson. 2012 Jun;219:53-60 Authors: Misra SK, Diehl S

Article GUID: 22613039

Ferromagnetism in annealed Ce0.95Co0.05O2 and Ce0.95Ni0.05O2 nanoparticles.

Author(s): Misra SK, Andronenko SI, Harris JD, Thurber A, Beausoleil GL, Punnoose A

J Nanosci Nanotechnol. 2013 Oct;13(10):6798-805 Authors: Misra SK, Andronenko SI, Harris JD, Thurber A, Beausoleil GL, Punnoose A

Article GUID: 24245146

Study of paramagnetic defect centers in as-grown and annealed TiO2 anatase and rutile nanoparticles by a variable-temperature X-band and high-frequency (236 GHz) EPR.

Author(s): Misra SK, Andronenko SI, Tipikin D, Freed JH, Somani V, Prakash O

J Magn Magn Mater. 2016 Mar 01;401:495-505 Authors: Misra SK, Andronenko SI, Tipikin D, Freed JH, Somani V, Prakash O

Article GUID: 27041794


Title:Calculation of Double-Quantum-Coherence Two-dimensional Spectra: Distance Measurements and Orientational Correlations.
Authors:Misra SKBorbat PPFreed JH
Link:https://www.ncbi.nlm.nih.gov/pubmed/20161423?dopt=Abstract
Category:Appl Magn Reson
PMID:20161423
Dept Affiliation: PHYSICS
1 Physics Department, Concordia University, Montreal, Quebec H3G 1M8, Canada.

Description:

Calculation of Double-Quantum-Coherence Two-dimensional Spectra: Distance Measurements and Orientational Correlations.

Appl Magn Reson. 2009 Dec 01;36(2-4):237-258

Authors: Misra SK, Borbat PP, Freed JH

Abstract

The double quantum coherence (DQC) echo signal for two coupled nitroxides separated by distances ?10 Å, is calculated rigorously for the six-pulse sequence. Successive application of six pulses on the initial density matrix, with appropriate inter-pulse time evolution and coherence pathway selection leaves only the coherent pathways of interest. The amplitude of the echo signal following the last p pulse can be used to obtain a one-dimensional dipolar spectrum (Pake doublet), and the echo envelope can be used to construct the two-dimensional DQC spectrum. The calculations are carried out using the product space spanned by the two electron-spin magnetic quantum numbers m(1), m(2) and the two nuclear-spin magnetic quantum numbers M(1), M(2), describing e.g. two coupled nitroxides in bilabeled proteins. The density matrix is subjected to a cascade of unitary transformations taking into account dipolar and electron exchange interactions during each pulse and during the evolution in the absence of a pulse. The unitary transformations use the eigensystem of the effective spin-Hamiltonians obtained by numerical matrix diagonalization. Simulations are carried out for a range of dipolar interactions, D, and microwave magnetic field strength B for both fixed and random orientations of the two (14)N (and (15)N) nitroxides. Relaxation effects were not included. Several examples of one- and two-dimensional Fourier transforms of the time domain signals vs. dipolar evolution and spin-echo envelope time variables are shown for illustration. Comparisons are made between 1D rigorous simulations and analytical approximations. The rigorous simulations presented here provide insights into DQC ESR spectroscopy, they serve as a standard to evaluate the results of approximate theories, and they can be employed to plan future DQC experiments.

PMID: 20161423 [PubMed - as supplied by publisher]