Keyword search (3,448 papers available)


Mechanisms that Link Chronological Aging to Cellular Quiescence in Budding Yeast.

Author(s): Mohammad K, Baratang Junio JA, Tafakori T, Orfanos E, Titorenko VI

Int J Mol Sci. 2020 Jul 02;21(13): Authors: Mohammad K, Baratang Junio JA, Tafakori T, Orfanos E, Titorenko VI

Article GUID: 32630624

Mechanisms by which PE21, an extract from the white willow Salix alba, delays chronological aging in budding yeast.

Author(s): Medkour Y, Mohammad K, Arlia-Ciommo A, Svistkova V, Dakik P, Mitrofanova D, Rodriguez MEL, Junio JAB, Taifour T, Escudero P, Goltsios FF, So...

Oncotarget. 2019 Oct 08;10(56):5780-5816 Authors: Medkour Y, Mohammad K, Arlia-Ciommo A, Svistkova V, Dakik P, Mitrofanova D, Rodriguez MEL, Junio JAB, Taifour T, Escudero P, Goltsios FF, Soodbakh...

Article GUID: 31645900

Lipid metabolism and transport define longevity of the yeast Saccharomyces cerevisiae.

Author(s): Mitrofanova D, Dakik P, McAuley M, Medkour Y, Mohammad K, Titorenko VI

Front Biosci (Landmark Ed). 2018 Jan 01;23:1166-1194 Authors: Mitrofanova D, Dakik P, McAuley M, Medkour Y, Mohammad K, Titorenko VI

Article GUID: 28930594

Some Metabolites Act as Second Messengers in Yeast Chronological Aging.

Author(s): Mohammad K, Dakik P, Medkour Y, McAuley M, Mitrofanova D, Titorenko VI

Int J Mol Sci. 2018 Mar 15;19(3): Authors: Mohammad K, Dakik P, Medkour Y, McAuley M, Mitrofanova D, Titorenko VI

Article GUID: 29543708

Yeast Cells Exposed to Exogenous Palmitoleic Acid Either Adapt to Stress and Survive or Commit to Regulated Liponecrosis and Die.

Author(s): Mohammad K, Dakik P, Medkour Y, McAuley M, Mitrofanova D, Titorenko VI

Oxid Med Cell Longev. 2018;2018:3074769 Authors: Mohammad K, Dakik P, Medkour Y, McAuley M, Mitrofanova D, Titorenko VI

Article GUID: 29636840

Yeast chronological aging is linked to cell cycle regulation.

Author(s): Mohammad K, Titorenko VI

Cell Cycle. 2018;17(9):1035-1036 Authors: Mohammad K, Titorenko VI PMID: 29895227 [PubMed - in process]

Article GUID: 29895227

Mechanisms through which lithocholic acid delays yeast chronological aging under caloric restriction conditions.

Author(s): Arlia-Ciommo A, Leonov A, Mohammad K, Beach A, Richard VR, Bourque SD, Burstein MT, Goldberg AA, Kyryakov P, Gomez-Perez A, Koupaki O, Titorenko VI

Oncotarget. 2018 Oct 09;9(79):34945-34971 Authors: Arlia-Ciommo A, Leonov A, Mohammad K, Beach A, Richard VR, Bourque SD, Burstein MT, Goldberg AA, Kyryakov P, Gomez-Perez A, Koupaki O, Titorenko VI

Article GUID: 30405886

Quiescence Entry, Maintenance, and Exit in Adult Stem Cells.

Author(s): Mohammad K, Dakik P, Medkour Y, Mitrofanova D, Titorenko VI

Int J Mol Sci. 2019 May 01;20(9): Authors: Mohammad K, Dakik P, Medkour Y, Mitrofanova D, Titorenko VI

Article GUID: 31052375

Mechanisms Through Which Some Mitochondria-Generated Metabolites Act as Second Messengers That Are Essential Contributors to the Aging Process in Eukaryotes Across Phyla.

Author(s): Dakik P, Medkour Y, Mohammad K, Titorenko VI

Front Physiol. 2019;10:461 Authors: Dakik P, Medkour Y, Mohammad K, Titorenko VI

Article GUID: 31057428


Title:Mechanisms through which lithocholic acid delays yeast chronological aging under caloric restriction conditions.
Authors:Arlia-Ciommo ALeonov AMohammad KBeach ARichard VRBourque SDBurstein MTGoldberg AAKyryakov PGomez-Perez AKoupaki OTitorenko VI
Link:https://www.ncbi.nlm.nih.gov/pubmed/30405886?dopt=Abstract
DOI:10.18632/oncotarget.26188
Category:Oncotarget
PMID:30405886
Dept Affiliation: BIOLOGY
1 Department of Biology, Concordia University, Montreal, Quebec, Canada.

Description:

Mechanisms through which lithocholic acid delays yeast chronological aging under caloric restriction conditions.

Oncotarget. 2018 Oct 09;9(79):34945-34971

Authors: Arlia-Ciommo A, Leonov A, Mohammad K, Beach A, Richard VR, Bourque SD, Burstein MT, Goldberg AA, Kyryakov P, Gomez-Perez A, Koupaki O, Titorenko VI

Abstract

All presently known geroprotective chemical compounds of plant and microbial origin are caloric restriction mimetics because they can mimic the beneficial lifespan- and healthspan-extending effects of caloric restriction diets without the need to limit calorie supply. We have discovered a geroprotective chemical compound of mammalian origin, a bile acid called lithocholic acid, which can delay chronological aging of the budding yeast Saccharomyces cerevisiae under caloric restriction conditions. Here, we investigated mechanisms through which lithocholic acid can delay chronological aging of yeast limited in calorie supply. We provide evidence that lithocholic acid causes a stepwise development and maintenance of an aging-delaying cellular pattern throughout the entire chronological lifespan of yeast cultured under caloric restriction conditions. We show that lithocholic acid stimulates the aging-delaying cellular pattern and preserves such pattern because it specifically modulates the spatiotemporal dynamics of a complex cellular network. We demonstrate that this cellular network integrates certain pathways of lipid and carbohydrate metabolism, some intercompartmental communications, mitochondrial morphology and functionality, and liponecrotic and apoptotic modes of aging-associated cell death. Our findings indicate that lithocholic acid prolongs longevity of chronologically aging yeast because it decreases the risk of aging-associated cell death, thus increasing the chance of elderly cells to survive.

PMID: 30405886 [PubMed]