Keyword search (3,448 papers available)


Filtration for improving surface water quality of a eutrophic lake.

Author(s): Palakkeel Veetil D, Arriagada EC, Mulligan CN, Bhat S

Algal blooms and the presence of cyanotoxins in surface water restrict the public from accessing lakes and beaches for drinking and recreational activities. An effort was taken in this on-site study to improve the surface water quality of a eutrophic lake, ...

Article GUID: 33310244

Start-up of oxygen-limited autotrophic partial nitrification-anammox process for treatment of nitrite-free wastewater in a single-stage hybrid bioreactor.

Author(s): Hosseinpour B, Saborimanesh N, Yerushalmi L, Walsh D, Mulligan CN

Environ Technol. 2019 Aug 04;:1-9 Authors: Hosseinpour B, Saborimanesh N, Yerushalmi L, Walsh D, Mulligan CN

Article GUID: 31378146

Pilot-scale application of a single-stage hybrid airlift BioCAST bioreactor for treatment of ammonium from nitrite-limited wastewater by a partial nitrification/anammox process.

Author(s): Saborimanesh N, Walsh D, Yerushalmi L, Arriagada EC, Mulligan CN

Environ Sci Pollut Res Int. 2019 Jul 02;: Authors: Saborimanesh N, Walsh D, Yerushalmi L, Arriagada EC, Mulligan CN

Article GUID: 31267396

An eco-friendly method for heavy metal removal from mine tailings.

Author(s): Arab F, Mulligan CN

Environ Sci Pollut Res Int. 2018 Jun;25(16):16202-16216 Authors: Arab F, Mulligan CN

Article GUID: 29594884


Title:An eco-friendly method for heavy metal removal from mine tailings.
Authors:Arab FMulligan CN
Link:https://www.ncbi.nlm.nih.gov/pubmed/29594884?dopt=Abstract
Category:Environ Sci Pollut Res Int
PMID:29594884
Dept Affiliation: ENCS
1 Department of Building, Civil, and Environmental Engineering, Concordia University, Montreal, Quebec, Canada.
2 Department of Building, Civil, and Environmental Engineering, Concordia University, Montreal, Quebec, Canada. mulligan@civil.concordia.ca.

Description:

An eco-friendly method for heavy metal removal from mine tailings.

Environ Sci Pollut Res Int. 2018 Jun;25(16):16202-16216

Authors: Arab F, Mulligan CN

Abstract

One of the serious environmental problems that society is facing today is mine tailings. These byproducts of the process of extraction of valuable elements from ores are a source of pollution and a threat to the environment. For example, mine tailings from past mining activities at Giant Mines, Yellowknife, are deposited in chambers, stopes, and tailing ponds close to the shores of The Great Slave Lake. One of the environmentally friendly approaches for removing heavy metals from these contaminated tailing is by using biosurfactants during the process of soil washing. The objective of this present study is to investigate the effect of sophorolipid (SL) concentration, the volume of washing solution per gram of medium, pH, and temperature on the efficiency of sophorolipids in removing heavy metals from mine tailings. It was found that the efficiency of the sophorolipids depends on its concentration, and is greatly affected by changes in pH, and temperature. The results of this experiment show that increasing the temperature from 15 to 23 °C, while using sophorolipids, resulted in an increase in the removal of iron, copper, and arsenic from the mine tailing specimen, from 0.25, 2.1, and 8.6 to 0.4, 3.3, and 11.7%. At the same time, increasing the temperature of deionized water (DIW) from 15 to 23 °C led to an increase in the removal of iron, copper, and arsenic from 0.03, 0.9, and 1.8 to 0.04, 1.1, and 2.1%, respectively. By increasing temperature from 23 to 35 °C, when using sophorolipids, 22% reduction in the removal of arsenic was observed. At the same time while using DI water as the washing solution, increasing temperature from 23 to 35 °C resulted in 6.2% increase in arsenic removal. The results from this present study indicate that sophorolipids are promising agents for replacing synthetic surfactants in the removal of arsenic and other heavy metals from soil and mine tailings.

PMID: 29594884 [PubMed - indexed for MEDLINE]