Keyword search (3,448 papers available)


Evidence of Simultaneous Spectral Hole Burning Involving Two Tiers of the Protein Energy Landscape in Cytochrome b6f.

Author(s): Shafiei G, Levenberg A, Lujan MA, Picorel R, Zazubovich V

J Phys Chem B. 2019 Dec 12;: Authors: Shafiei G, Levenberg A, Lujan MA, Picorel R, Zazubovich V

Article GUID: 31763829

Parameters of the protein energy landscapes of several light-harvesting complexes probed via spectral hole growth kinetics measurements.

Author(s): Herascu N, Najafi M, Amunts A, Pieper J, Irrgang KD, Picorel R, Seibert M, Zazubovich V

J Phys Chem B. 2011 Mar 31;115(12):2737-47 Authors: Herascu N, Najafi M, Amunts A, Pieper J, Irrgang KD, Picorel R, Seibert M, Zazubovich V

Article GUID: 21391534

Effects of the distributions of energy or charge transfer rates on spectral hole burning in pigment-protein complexes at low temperatures.

Author(s): Herascu N, Ahmouda S, Picorel R, Seibert M, Jankowiak R, Zazubovich V

J Phys Chem B. 2011 Dec 22;115(50):15098-109 Authors: Herascu N, Ahmouda S, Picorel R, Seibert M, Jankowiak R, Zazubovich V

Article GUID: 22046956

Spectral hole burning, recovery, and thermocycling in chlorophyll-protein complexes: distributions of barriers on the protein energy landscape.

Author(s): Najafi M, Herascu N, Seibert M, Picorel R, Jankowiak R, Zazubovich V

J Phys Chem B. 2012 Sep 27;116(38):11780-90 Authors: Najafi M, Herascu N, Seibert M, Picorel R, Jankowiak R, Zazubovich V

Article GUID: 22957798

Conformational Changes in Pigment-Protein Complexes at Low Temperatures-Spectral Memory and a Possibility of Cooperative Effects.

Author(s): Najafi M, Herascu N, Shafiei G, Picorel R, Zazubovich V

J Phys Chem B. 2015 Jun 11;119(23):6930-40 Authors: Najafi M, Herascu N, Shafiei G, Picorel R, Zazubovich V

Article GUID: 25985255

A simple and efficient method to prepare pure dimers and monomers of the cytochrome b 6 f complex from spinach.

Author(s): Luján MA, Lorente P, Zazubovich V, Picorel R

Photosynth Res. 2017 Jun;132(3):305-309 Authors: Luján MA, Lorente P, Zazubovich V, Picorel R

Article GUID: 28374305

Probing Energy Landscapes of Cytochrome b6f with Spectral Hole Burning: Effects of Deuterated Solvent and Detergent.

Author(s): Levenberg A, Shafiei G, Lujan MA, Giannacopoulos S, Picorel R, Zazubovich V

J Phys Chem B. 2017 10 26;121(42):9848-9858 Authors: Levenberg A, Shafiei G, Lujan MA, Giannacopoulos S, Picorel R, Zazubovich V

Article GUID: 28956922


Title:Probing Energy Landscapes of Cytochrome b6f with Spectral Hole Burning: Effects of Deuterated Solvent and Detergent.
Authors:Levenberg AShafiei GLujan MAGiannacopoulos SPicorel RZazubovich V
Link:https://www.ncbi.nlm.nih.gov/pubmed/28956922?dopt=Abstract
Category:J Phys Chem B
PMID:28956922
Dept Affiliation: PHYSICS
1 Department of Physics, Concordia University , 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada.
2 Estacion Experimental de Aula Dei (CSIC) , Avda. Montañana 1005, 50059 Zaragoza, Spain.

Description:

Probing Energy Landscapes of Cytochrome b6f with Spectral Hole Burning: Effects of Deuterated Solvent and Detergent.

J Phys Chem B. 2017 10 26;121(42):9848-9858

Authors: Levenberg A, Shafiei G, Lujan MA, Giannacopoulos S, Picorel R, Zazubovich V

Abstract

In non-photochemical spectral hole burning (NPHB) and spectral hole recovery experiments, cytochrome b6f protein exhibits behavior that is almost independent of the deuteration of the buffer/glycerol glassy matrix containing the protein, apart from some differences in heat dissipation. On the other hand, strong dependence of the hole burning properties on sample preparation procedures was observed and attributed to a large increase of the electron-phonon coupling and shortening of the excited-state lifetime occurring when n-dodecyl ß-d-maltoside (DM) is used as a detergent instead of n-octyl ß-d-glucopyranoside (OGP). The data was analyzed assuming that the tunneling parameter distribution or barrier distribution probed by NPHB and encoded into the spectral holes contains contributions from two nonidentical components with accidentally degenerate excited state ?-distributions. Both components likely reflect protein dynamics, although with some small probability one of them (with larger md2) may still represent the dynamics involving specifically the -OH groups of the water/glycerol solvent. Single proton tunneling in the water/glycerol solvent environment or in the protein can be safely excluded as the origin of observed NPHB and hole recovery dynamics. The intensity dependence of the hole growth kinetics in deuterated samples likely reflects differences in heat dissipation between protonated and deuterated samples. These differences are most probably due to the higher interface thermal resistivity between (still protonated) protein and deuterated water/glycerol outside environment.

PMID: 28956922 [PubMed - indexed for MEDLINE]