Keyword search (3,448 papers available)


Deletion of the Aspergillus niger Pro-Protein Processing Protease Gene kexB Results in a pH-Dependent Morphological Transition during Submerged Cultivations and Increases Cell Wall Chitin Content.

Author(s): van Leeuwe TM, Arentshorst M, Forn-Cuní G, Geoffrion N, Tsang A, Delvigne F, Meijer AH, Ram AFJ, Punt PJ...

There is a growing interest in the use of post-fermentation mycelial waste to obtain cell wall chitin as an added-value product. In the pursuit to identify suitable production strains that can be u...

Article GUID: 33276589

The pathway intermediate 2-keto-3-deoxy-L-galactonate mediates the induction of genes involved in D-galacturonic acid utilization in Aspergillus niger.

Author(s): Alazi E, Khosravi C, Homan TG, du Pré S, Arentshorst M, Di Falco M, Pham TTM, Peng M, Aguilar-Pontes MV, Visser J, Tsang A, de Vries RP, Ram AFJ

FEBS Lett. 2017 05;591(10):1408-1418 Authors: Alazi E, Khosravi C, Homan TG, du Pré S, Arentshorst M, Di Falco M, Pham TTM, Peng M, Aguilar-Pontes MV, Visser J, Tsang A, de Vries RP, Ram AFJ

Article GUID: 28417461

W361R mutation in GaaR, the regulator of D-galacturonic acid-responsive genes, leads to constitutive production of pectinases in Aspergillus niger.

Author(s): Alazi E, Niu J, Otto SB, Arentshorst M, Pham TTM, Tsang A, Ram AFJ

Microbiologyopen. 2019 May;8(5):e00732 Authors: Alazi E, Niu J, Otto SB, Arentshorst M, Pham TTM, Tsang A, Ram AFJ

Article GUID: 30298571


Title:W361R mutation in GaaR, the regulator of D-galacturonic acid-responsive genes, leads to constitutive production of pectinases in Aspergillus niger.
Authors:Alazi ENiu JOtto SBArentshorst MPham TTMTsang ARam AFJ
Link:https://www.ncbi.nlm.nih.gov/pubmed/30298571?dopt=Abstract
DOI:10.1002/mbo3.732
Category:Microbiologyopen
PMID:30298571
Dept Affiliation: GENOMICS
1 Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.
2 Centre for Structural and Functional Genomics, Concordia University, Montreal, Québec, Canada.

Description:

W361R mutation in GaaR, the regulator of D-galacturonic acid-responsive genes, leads to constitutive production of pectinases in Aspergillus niger.

Microbiologyopen. 2019 May;8(5):e00732

Authors: Alazi E, Niu J, Otto SB, Arentshorst M, Pham TTM, Tsang A, Ram AFJ

Abstract

Polysaccharides present in plant biomass, such as pectin, are the main carbon source for filamentous fungi. Aspergillus niger naturally secretes pectinases to degrade pectin and utilize the released monomers, mainly D-galacturonic acid. The transcriptional activator GaaR, the repressor of D-galacturonic acid utilization GaaX, and the physiological inducer 2-keto-3-deoxy-L-galactonate play important roles in the transcriptional regulation of D-galacturonic acid-responsive genes, which include the genes encoding pectinases. In this study, we described the mutations found in gaaX and gaaR that enabled constitutive (i.e., inducer-independent) expression of pectinases by A. niger. Using promoter-reporter strains (PpgaX-amdS) and polygalacturonic acid plate assays, we showed that W361R mutation in GaaR results in constitutive production of pectinases. Analysis of subcellular localization of C-terminally eGFP-tagged GaaR/GaaRW 361R revealed important differences in nuclear accumulation of N- versus C-terminally eGFP-tagged GaaR.

PMID: 30298571 [PubMed - in process]