Keyword search (3,619 papers available)


The phenotype associated with variants in TANGO2 may be explained by a dual role of the protein in ER-to-Golgi transport and at the mitochondria.

Author(s): Milev MP, Saint-Dic D, Zardoui K, Klopstock T, Law C, Distelmaier F, Sacher M

TANGO2 variants result in a complex disease phenotype consisting of recurrent crisis-induced rhabdomyolysis, encephalopathy, seizures, lactic acidosis, hypoglycemia, and cardiac arrhythmias. Although first described in a fruit fly model as a protein necessa...

Article GUID: 32909282

A novel homozygous variant in TRAPPC2L results in a neurodevelopmental disorder and disrupts TRAPP complex function.

Author(s): Al-Deri N, Okur V, Ahimaz P, Milev M, Valivullah Z, Hagen J, Sheng Y, Chung W, Sacher M, Ganapathi M...

BACKGROUND: Next-generation sequencing has facilitated the diagnosis of neurodevelopmental disorders with variable and non-specific clinical findings. Recently, a homozygous missense p.(Asp37Tyr) v...

Article GUID: 32843486

TRAPPing a neurological disorder: from yeast to humans.

Author(s): Lipatova Z, Van Bergen N, Stanga D, Sacher M, Christodoulou J, Segev N

Autophagy. 2020 Mar 02;: Authors: Lipatova Z, Van Bergen N, Stanga D, Sacher M, Christodoulou J, Segev N

Article GUID: 32116085

Deficiencies in vesicular transport mediated by TRAPPC4 are associated with severe syndromic intellectual disability.

Author(s): Van Bergen NJ, Guo Y, Al-Deri N, Lipatova Z, Stanga D, Zhao S, Murtazina R, Gyurkovska V, Pehlivan D, Mitani T, Gezdirici A, Antony J, Colli...

The conserved transport protein particle (TRAPP) complexes regulate key trafficking events and are required for autophagy. TRAPPC4, like its yeast Trs23 orthologue, is a core component of the TRAPP...

Article GUID: 31794024

Characterization of three TRAPPC11 variants suggests a critical role for the extreme carboxy terminus of the protein.

Author(s): Milev MP, Stanga D, Schänzer A, Nascimento A, Saint-Dic D, Ortez C, Benito DN, Barrios DG, Colomer J, Badosa C, Jou C, Gallano P, Gonzalez-Q...

Sci Rep. 2019 Oct 01;9(1):14036 Authors: Milev MP, Stanga D, Schänzer A, Nascimento A, Saint-Dic D, Ortez C, Benito DN, Barrios DG, Colomer J, Badosa C, Jou C, Gallano P, Gonzalez-Quereda L, ...

Article GUID: 31575891

Mutations in TRAPPC12 Manifest in Progressive Childhood Encephalopathy and Golgi Dysfunction.

Author(s): Milev MP, Grout ME, Saint-Dic D, Cheng YH, Glass IA, Hale CJ, Hanna DS, Dorschner MO, Prematilake K, Shaag A, Elpeleg O, Sacher M, Doherty D...

Am J Hum Genet. 2017 Aug 03;101(2):291-299 Authors: Milev MP, Grout ME, Saint-Dic D, Cheng YH, Glass IA, Hale CJ, Hanna DS, Dorschner MO, Prematilake K, Shaag A, Elpeleg O, Sacher M, Doherty D, Ed...

Article GUID: 28777934

TRAMM/TrappC12 plays a role in chromosome congression, kinetochore stability, and CENP-E recruitment.

Author(s): Milev MP, Hasaj B, Saint-Dic D, Snounou S, Zhao Q, Sacher M

J Cell Biol. 2015 Apr 27;209(2):221-34 Authors: Milev MP, Hasaj B, Saint-Dic D, Snounou S, Zhao Q, Sacher M

Article GUID: 25918224

TRAPPC11 and GOSR2 mutations associate with hypoglycosylation of α-dystroglycan and muscular dystrophy.

Author(s): Larson AA, Baker PR, Milev MP, Press CA, Sokol RJ, Cox MO, Lekostaj JK, Stence AA, Bossler AD, Mueller JM, Prematilake K, Tadjo TF, Williams...

Skelet Muscle. 2018 05 31;8(1):17 Authors: Larson AA, Baker PR, Milev MP, Press CA, Sokol RJ, Cox MO, Lekostaj JK, Stence AA, Bossler AD, Mueller JM, Prematilake K, Tadjo TF, Williams CA, Sacher M...

Article GUID: 29855340

Bi-allelic mutations in TRAPPC2L result in a neurodevelopmental disorder and have an impact on RAB11 in fibroblasts.

Author(s): Milev MP, Graziano C, Karall D, Kuper WFE, Al-Deri N, Cordelli DM, Haack TB, Danhauser K, Iuso A, Palombo F, Pippucci T, Prokisch H, Saint-D...

J Med Genet. 2018 Nov;55(11):753-764 Authors: Milev MP, Graziano C, Karall D, Kuper WFE, Al-Deri N, Cordelli DM, Haack TB, Danhauser K, Iuso A, Palombo F, Pippucci T, Prokisch H, Saint-Dic D, Seri...

Article GUID: 30120216

TRAPPopathies: An emerging set of disorders linked to variations in the genes encoding transport protein particle (TRAPP)-associated proteins.

Author(s): Sacher M, Shahrzad N, Kamel H, Milev MP

Traffic. 2019 01;20(1):5-26 Authors: Sacher M, Shahrzad N, Kamel H, Milev MP

Article GUID: 30152084

TRAPPC11 functions in autophagy by recruiting ATG2B-WIPI4/WDR45 to preautophagosomal membranes.

Author(s): Stanga D, Zhao Q, Milev MP, Saint-Dic D, Jimenez-Mallebrera C, Sacher M

Traffic. 2019 May;20(5):325-345 Authors: Stanga D, Zhao Q, Milev MP, Saint-Dic D, Jimenez-Mallebrera C, Sacher M

Article GUID: 30843302


Title:TRAPPopathies: An emerging set of disorders linked to variations in the genes encoding transport protein particle (TRAPP)-associated proteins.
Authors:Sacher MShahrzad NKamel HMilev MP
Link:https://www.ncbi.nlm.nih.gov/pubmed/30152084?dopt=Abstract
DOI:10.1111/tra.12615
Category:Traffic
PMID:30152084
Dept Affiliation: BIOLOGY
1 Department of Biology, Concordia University, Montreal, Quebec, Canada.
2 Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.
3 Department of Medicine, University of California, San Francisco, California.

Description:

TRAPPopathies: An emerging set of disorders linked to variations in the genes encoding transport protein particle (TRAPP)-associated proteins.

Traffic. 2019 01;20(1):5-26

Authors: Sacher M, Shahrzad N, Kamel H, Milev MP

Abstract

The movement of proteins between cellular compartments requires the orchestrated actions of many factors including Rab family GTPases, Soluble NSF Attachment protein REceptors (SNAREs) and so-called tethering factors. One such tethering factor is called TRAnsport Protein Particle (TRAPP), and in humans, TRAPP proteins are distributed into two related complexes called TRAPP II and III. Although thought to act as a single unit within the complex, in the past few years it has become evident that some TRAPP proteins function independently of the complex. Consistent with this, variations in the genes encoding these proteins result in a spectrum of human diseases with diverse, but partially overlapping, phenotypes. This contrasts with other tethering factors such as COG, where variations in the genes that encode its subunits all result in an identical phenotype. In this review, we present an up-to-date summary of all the known disease-related variations of genes encoding TRAPP-associated proteins and the disorders linked to these variations which we now call TRAPPopathies.

PMID: 30152084 [PubMed - in process]