Keyword search (3,448 papers available)


The priming effect of food persists following blockade of dopamine receptors.

Author(s): Evangelista C, Hantson A, Shams WM, Almey A, Pileggi M, Voisard JR, Boulos V, Al-Qadri Y, Gonzalez Cautela BV, Zhou FX, Duchemin J, Habrich ...

Eur J Neurosci. 2019 Jul 27;: Authors: Evangelista C, Hantson A, Shams WM, Almey A, Pileggi M, Voisard JR, Boulos V, Al-Qadri Y, Gonzalez Cautela BV, Zhou FX, Duchemin J, Habrich A, Tito N, Koumro...

Article GUID: 31350860

High estrogen and chronic haloperidol lead to greater amphetamine-induced BOLD activation in awake, amphetamine-sensitized female rats.

Author(s): Madularu D, Kulkarni P, Yee JR, Kenkel WM, Shams WM, Ferris CF, Brake WG

Horm Behav. 2016 06;82:56-63 Authors: Madularu D, Kulkarni P, Yee JR, Kenkel WM, Shams WM, Ferris CF, Brake WG

Article GUID: 27154458

17β-Estradiol infusions into the dorsal striatum rapidly increase dorsal striatal dopamine release in vivo.

Author(s): Shams WM, Sanio C, Quinlan MG, Brake WG

Neuroscience. 2016 08 25;330:162-70 Authors: Shams WM, Sanio C, Quinlan MG, Brake WG

Article GUID: 27256507

Interactions between estradiol and haloperidol on perseveration and reversal learning in amphetamine-sensitized female rats.

Author(s): Almey A, Arena L, Oliel J, Shams WM, Hafez N, Mancinelli C, Henning L, Tsanev A, Brake WG

Horm Behav. 2017 03;89:113-120 Authors: Almey A, Arena L, Oliel J, Shams WM, Hafez N, Mancinelli C, Henning L, Tsanev A, Brake WG

Article GUID: 28062232

17β-estradiol locally increases phasic dopamine release in the dorsal striatum.

Author(s): Shams WM, Cossette MP, Shizgal P, Brake WG

Neurosci Lett. 2018 02 05;665:29-32 Authors: Shams WM, Cossette MP, Shizgal P, Brake WG

Article GUID: 29175028


Title:17β-estradiol locally increases phasic dopamine release in the dorsal striatum.
Authors:Shams WMCossette MPShizgal PBrake WG
Link:https://www.ncbi.nlm.nih.gov/pubmed/29175028?dopt=Abstract
DOI:10.1016/j.neulet.2017.11.039
Category:Neurosci Lett
PMID:29175028
Dept Affiliation: CSBN
1 Department of Psychology, Centre for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, H4B 1R6, Canada. Electronic address: waqqas.shams@gmail.com.
2 Department of Psychology, Centre for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, H4B 1R6, Canada. Electronic address: mpy_cossette@hotmail.com.
3 Department of Psychology, Centre for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, H4B 1R6, Canada. Electronic address: peter.shizgal@concordia.ca.
4 Department of Psychology, Centre for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, H4B 1R6, Canada. Electronic address: wayne.brake@concordia.ca.

Description:

17ß-estradiol locally increases phasic dopamine release in the dorsal striatum.

Neurosci Lett. 2018 02 05;665:29-32

Authors: Shams WM, Cossette MP, Shizgal P, Brake WG

Abstract

Studies using in vivo microdialysis have shown that 17ß-estradiol (E2) increases dopamine (DA) transmission in the dorsal striatum. Both systemic administration of E2 and local infusion into the dorsal striatum rapidly enhance amphetamine-induced DA release. However, it is not known to what degree these effects reflect tonic and/or phasic DA release. It was hypothesized that E2 acts directly within the DS to rapidly increase phasic DA transmission. In urethane-anesthetized (1.5mL/kg) female rats, we used fast-scan cyclic voltammetry to study the effects of E2 on phasic, electrically-evoked release of DA in the dorsal striatum. Rats were ovariectomized and implanted with a silastic tube containing 5% E2 in cholesterol, previously shown to mimic low physiological serum concentrations of~20-25pg/mL. DA release was evoked every 1min by delivering biphasic electrical stimulation in the substantia nigra. Local infusions of E2 (244.8pg/µl) into the dorsal striatum increased the amplitude of the electrically evoked DA transients. Behaviorally significant stimuli and events trigger phasic release of DA. The present findings predict that E2 would boost such signaling in behaving subjects.

PMID: 29175028 [PubMed - indexed for MEDLINE]