Keyword search (3,448 papers available)


The effect of step-feeding distribution ratio on high concentration perchlorate removal performance in ABR system with heterotrophic combined sulfur autotrophic process.

Author(s): Li H, Li K, Guo J, Chen Z, Han Y, Song Y, Lu C, Hou Y, Zhang D, Zhang Y

In a lab-scale anaerobic baffled reactor (ABR) with eight compartments, the heterotrophic and sulfur autotrophic processes were combined to remove perchlorate. And then, the step-feeding distribution ratio of the heterotrophic perchlorate reduction unit (HP...

Article GUID: 33485237

Acceleration mechanism of bioavailable Fe(Ⅲ) on Te(IV) bioreduction of Shewanella oneidensis MR-1: Promotion of electron generation, electron transfer and energy level.

Author(s): He Y, Guo J, Song Y, Chen Z, Lu C, Han Y, Li H, Hou Y, Zhao R

The release of highly toxic tellurite into the aquatic environment poses significant environmental risks. The acceleration mechanism and tellurium nanorods (TeNPs) characteristics with bioavailable ferric citrate (Fe(III)) were investigated in the tellurite...

Article GUID: 32853890

Effect and ameliorative mechanisms of polyoxometalates on the denitrification under sulfonamide antibiotics stress.

Author(s): Guo H, Chen Z, Lu C, Guo J, Li H, Song Y, Han Y, Hou Y

Bioresour Technol. 2020 Feb 22;305:123073 Authors: Guo H, Chen Z, Lu C, Guo J, Li H, Song Y, Han Y, Hou Y

Article GUID: 32145698

Effect of dissolved oxygen on simultaneous removal of ammonia, nitrate and phosphorus via biological aerated filter with sulfur and pyrite as composite fillers.

Author(s): Li Y, Guo J, Li H, Song Y, Chen Z, Lu C, Han Y, Hou Y

Bioresour Technol. 2019 Oct 28;296:122340 Authors: Li Y, Guo J, Li H, Song Y, Chen Z, Lu C, Han Y, Hou Y

Article GUID: 31704601

Enhanced denitrification performance and biocatalysis mechanisms of polyoxometalates as environmentally-friendly inorganic redox mediators.

Author(s): Guo H, Chen Z, Guo J, Lu C, Song Y, Han Y, Li H, Hou Y

Bioresour Technol. 2019 Jul 16;291:121816 Authors: Guo H, Chen Z, Guo J, Lu C, Song Y, Han Y, Li H, Hou Y

Article GUID: 31344631

Rapid of cultivation dissimilatory perchlorate reducing granular sludge and characterization of the granulation process.

Author(s): Yin P, Guo J, Xiao S, Chen Z, Song Y, Ren X

Bioresour Technol. 2019 Mar;276:260-268 Authors: Yin P, Guo J, Xiao S, Chen Z, Song Y, Ren X

Article GUID: 30640020

A combined heterotrophic and sulfur-based autotrophic process to reduce high concentration perchlorate via anaerobic baffled reactors: Performance advantages of a step-feeding strategy.

Author(s): Li K, Guo J, Li H, Han Y, Chen Z, Song Y, Xing Y, Zhang C

Bioresour Technol. 2019 May;279:297-306 Authors: Li K, Guo J, Li H, Han Y, Chen Z, Song Y, Xing Y, Zhang C

Article GUID: 30738356

Respiratory and hemodynamic contributions to emotion-related pre-syncopal vasovagal symptoms.

Author(s): Harrison JM, Gilchrist PT, Corovic TS, Bogetti C, Song Y, Bacon SL, Ditto B

Biol Psychol. 2017 07;127:46-52 Authors: Harrison JM, Gilchrist PT, Corovic TS, Bogetti C, Song Y, Bacon SL, Ditto B

Article GUID: 28456564


Title:A combined heterotrophic and sulfur-based autotrophic process to reduce high concentration perchlorate via anaerobic baffled reactors: Performance advantages of a step-feeding strategy.
Authors:Li KGuo JLi HHan YChen ZSong YXing YZhang C
Link:https://www.ncbi.nlm.nih.gov/pubmed/30738356?dopt=Abstract
Category:Bioresour Technol
PMID:30738356
Dept Affiliation: ENCS
1 Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China.
2 Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China. Electronic address: jianbguo@163.com.
3 Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W. Montreal, Quebec, Canada.
4 Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, PR China.

Description:

A combined heterotrophic and sulfur-based autotrophic process to reduce high concentration perchlorate via anaerobic baffled reactors: Performance advantages of a step-feeding strategy.

Bioresour Technol. 2019 May;279:297-306

Authors: Li K, Guo J, Li H, Han Y, Chen Z, Song Y, Xing Y, Zhang C

Abstract

The combined anaerobic baffled reactors (ABRs) of heterotrophic and sulfur-based autotrophic processes were first investigated for the removal of high perchlorate concentration under different feeding strategies. The removal efficiency of the step-feeding ABR (SF-ABR) reached 97.56% at 800?mg/L perchlorate, which was significantly superior to the normal-feeding ABR (NF-ABR). In three components of the extracellular polymeric substances (EPS), the fluorescence intensity of the tryptophan-like component were identified by fluorescence excitation-emission matrix (EEM) spectra with parallel factor (PARAFAC) analysis, and exhibited a positive relationship with the perchlorate removal rate in the heterotrophic perchlorate reduction unit (HPR unit) of the SF-ABR (R2?=?0.9791) and NF-ABR (R2?=?0.9860). Bacterial community analysis suggested the dominating perchlorate reducing bacteria and the diversity in two ABRs. Principal component analysis indicated that the electron donor affected the microbial community structures. The study confirms that the SF-ABR is a powerful bioreactor for the combined heterotrophic and sulfur-based autotrophic process.

PMID: 30738356 [PubMed - in process]