Keyword search (3,619 papers available)


Protocol for a partially nested randomised controlled trial to evaluate the effectiveness of the scleroderma patient-centered intervention network COVID-19 home-isolation activities together (SPIN-CHAT) program to reduce anxiety among at-risk scleroderma patients.

Author(s): Thombs BD, Kwakkenbos L, Carrier ME, Bourgeault A, Tao L, Harb S, Gagarine M, Rice D, Bustamante L, Ellis K, Duchek D, Wu Y, Bhandari PM, Ne...

J Psychosom Res. 2020 May 14;135:110132 Authors: Thombs BD, Kwakkenbos L, Carrier ME, Bourgeault A, Tao L, Harb S, Gagarine M, Rice D, Bustamante L, Ellis K, Duchek D, Wu Y, Bhandari PM, Neupane D...

Article GUID: 32521358

Photosystem Biogenesis Is Localized to the Translation Zone in the Chloroplast of Chlamydomonas.

Author(s): Sun Y, Valente-Paterno MI, Bakhtiari S, Law C, Zhan Y, Zerges W

Photosystem Biogenesis Is Localized to the Translation Zone in the Chloroplast of Chlamydomonas.

Plant Cell. 2019 Oct 07;:

Authors: Sun Y, Valente-Paterno MI, Bakhtiari S, Law C, Zhan Y, Zerges W

Abstract
Intracellular pro...

Article GUID: 31591163

Chemogenomic Profiling of the Fungal Pathogen Candida albicans.

Author(s): Chen Y, Mallick J, Maqnas A, Sun Y, Choudhury BI, Côte P, Yan L, Ni TJ, Li Y, Zhang D, Rodríguez-Ortiz R, Lv QZ, Jiang YY, Whiteway M

Antimicrob Agents Chemother. 2018 02;62(2): Authors: Chen Y, Mallick J, Maqnas A, Sun Y, Choudhury BI, Côte P, Yan L, Ni TJ, Li Y, Zhang D, Rodríguez-Ortiz R, Lv QZ, Jiang YY, Whiteway M

Article GUID: 29203491

Erratum for Chen et al., "Chemogenomic Profiling of the Fungal Pathogen Candida albicans".

Author(s): Chen Y, Mallick J, Maqnas A, Sun Y, Choudhury BI, Côte P, Yan L, Ni TJ, Li Y, Zhang D, Rodríguez-Ortiz R, Lv QZ, Jiang YY, Whiteway M...

Antimicrob Agents Chemother. 2018 04;62(4): Authors: Chen Y, Mallick J, Maqnas A, Sun Y, Choudhury BI, Côte P, Yan L, Ni TJ, Li Y, Zhang D, Rodríguez-Ortiz R, Lv QZ, Jiang YY, Whiteway M...

Article GUID: 29588354

Translational regulation in chloroplasts for development and homeostasis.

Author(s): Sun Y, Zerges W

Biochim Biophys Acta. 2015 Sep;1847(9):809-20 Authors: Sun Y, Zerges W

Article GUID: 25988717


Title:Chemogenomic Profiling of the Fungal Pathogen Candida albicans.
Authors:Chen YMallick JMaqnas ASun YChoudhury BICôte PYan LNi TJLi YZhang DRodríguez-Ortiz RLv QZJiang YYWhiteway M
Link:https://www.ncbi.nlm.nih.gov/pubmed/29203491?dopt=Abstract
DOI:10.1128/AAC.02365-17
Category:Antimicrob Agents Chemother
PMID:29203491
Dept Affiliation: BIOLOGY
1 Biology Department, Concordia University, Montreal, Canada.
2 Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China.
3 Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China.
4 CONACYT, Institute of Neurobiology, UNAM, Juriquilla Campus, Querétaro, Mexico.
5 Biology Department, Concordia University, Montreal, Canada malcolm.whiteway@concordia.ca.

Description:

Chemogenomic Profiling of the Fungal Pathogen Candida albicans.

Antimicrob Agents Chemother. 2018 02;62(2):

Authors: Chen Y, Mallick J, Maqnas A, Sun Y, Choudhury BI, Côte P, Yan L, Ni TJ, Li Y, Zhang D, Rodríguez-Ortiz R, Lv QZ, Jiang YY, Whiteway M

Abstract

There is currently a small number of classes of antifungal drugs, and these drugs are known to target a very limited set of cellular functions. We derived a set of approximately 900 nonessential, transactivator-defective disruption strains from the tetracycline-regulated GRACE collection of strains of the fungal pathogen Candida albicans This strain set was screened against classic antifungal drugs to identify gene inactivations that conferred either enhanced sensitivity or increased resistance to the compounds. We examined two azoles, fluconazole and posaconazole; two echinocandins, caspofungin and anidulafungin; and a polyene, amphotericin B. Overall, the chemogenomic profiles within drug classes were highly similar, but there was little overlap between classes, suggesting that the different drug classes interacted with discrete networks of genes in C. albicans We also tested two pyridine amides, designated GPI-LY7 and GPI-C107; these drugs gave very similar profiles that were distinct from those of the echinocandins, azoles, or polyenes, supporting the idea that they target a distinct cellular function. Intriguingly, in cases where these gene sets can be compared to genetic disruptions conferring drug sensitivity in other fungi, we find very little correspondence in genes. Thus, even though the drug targets are the same in the different species, the specific genetic profiles that can lead to drug sensitivity are distinct. This implies that chemogenomic screens of one organism may be poorly predictive of the profiles found in other organisms and that drug sensitivity and resistance profiles can differ significantly among organisms even when the apparent target of the drug is the same.

PMID: 29203491 [PubMed]