Keyword search (3,168 papers available)


High resolution atlas of the venous brain vasculature from 7 T quantitative susceptibility maps.

Author(s): Huck J, Wanner Y, Fan AP, Jäger AT, Grahl S, Schneider U, Villringer A, Steele CJ, Tardif CL, Bazin PL, Gauthier CJ

Brain Struct Funct. 2019 Jul 05;: Authors: Huck J, Wanner Y, Fan AP, Jäger AT, Grahl S, Schneider U, Villringer A, Steele CJ, Tardif CL, Bazin PL, Gauthier CJ

Article GUID: 31278570

Advanced MRI techniques to improve our understanding of experience-induced neuroplasticity.

Author(s): Tardif CL, Gauthier CJ, Steele CJ, Bazin PL, Schäfer A, Schaefer A, Turner R, Villringer A

Neuroimage. 2016 05 01;131:55-72 Authors: Tardif CL, Gauthier CJ, Steele CJ, Bazin PL, Schäfer A, Schaefer A, Turner R, Villringer A

Article GUID: 26318050

Elevated brain oxygen extraction fraction measured by MRI susceptibility relates to perfusion status in acute ischemic stroke.

Author(s): Fan AP, Khalil AA, Fiebach JB, Zaharchuk G, Villringer A, Villringer K, Gauthier CJ

J Cereb Blood Flow Metab. 2019 Feb 07;:271678X19827944 Authors: Fan AP, Khalil AA, Fiebach JB, Zaharchuk G, Villringer A, Villringer K, Gauthier CJ

Article GUID: 30732551

Kinematic profiles suggest differential control processes involved in bilateral in-phase and anti-phase movements.

Author(s): Shih PC, Steele CJ, Nikulin V, Villringer A, Sehm B

Sci Rep. 2019 Mar 01;9(1):3273 Authors: Shih PC, Steele CJ, Nikulin V, Villringer A, Sehm B

Article GUID: 30824858

Investigation of the confounding effects of vasculature and metabolism on computational anatomy studies.

Author(s): Tardif CL, Steele CJ, Lampe L, Bazin PL, Ragert P, Villringer A, Gauthier CJ

Neuroimage. 2017 04 01;149:233-243 Authors: Tardif CL, Steele CJ, Lampe L, Bazin PL, Ragert P, Villringer A, Gauthier CJ

Article GUID: 28159689


Title:Advanced MRI techniques to improve our understanding of experience-induced neuroplasticity.
Authors:Tardif CLGauthier CJSteele CJBazin PLSchäfer ASchaefer ATurner RVillringer A
Link:https://www.ncbi.nlm.nih.gov/pubmed/26318050?dopt=Abstract
Category:Neuroimage
PMID:26318050
Dept Affiliation: PERFORM
1 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. Electronic address: ctardif@cbs.mpg.de.
2 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; PERFORM Centre/Department of Physics, Concordia University, Montreal, Canada. Electronic address: claudine.gauthier@concordia.ca.
3 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
4 Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
5 Department of Electrical and Computer Engineering, Clinical Imaging Research Centre & Singapore Insitute for Neurotechnology, National University of Singapore, Singapore.

Description:

Advanced MRI techniques to improve our understanding of experience-induced neuroplasticity.

Neuroimage. 2016 05 01;131:55-72

Authors: Tardif CL, Gauthier CJ, Steele CJ, Bazin PL, Schäfer A, Schaefer A, Turner R, Villringer A

Abstract

Over the last two decades, numerous human MRI studies of neuroplasticity have shown compelling evidence for extensive and rapid experience-induced brain plasticity in vivo. To date, most of these studies have consisted of simply detecting a difference in structural or functional images with little concern for their lack of biological specificity. Recent reviews and public debates have stressed the need for advanced imaging techniques to gain a better understanding of the nature of these differences - characterizing their extent in time and space, their underlying biological and network dynamics. The purpose of this article is to give an overview of advanced imaging techniques for an audience of cognitive neuroscientists that can assist them in the design and interpretation of future MRI studies of neuroplasticity. The review encompasses MRI methods that probe the morphology, microstructure, function, and connectivity of the brain with improved specificity. We underline the possible physiological underpinnings of these techniques and their recent applications within the framework of learning- and experience-induced plasticity in healthy adults. Finally, we discuss the advantages of a multi-modal approach to gain a more nuanced and comprehensive description of the process of learning.

PMID: 26318050 [PubMed - indexed for MEDLINE]