Keyword search (3,448 papers available)


Proton release due to manganese binding and oxidation in modified bacterial reaction centers.

Author(s): Kálmán L, Thielges MC, Williams JC, Allen JP

Biochemistry. 2005 Oct 11;44(40):13266-73 Authors: Kálmán L, Thielges MC, Williams JC, Allen JP

Article GUID: 16201752

Comparison of bacterial reaction centers and photosystem II.

Author(s): Kálmán L, Williams JC, Allen JP

Photosynth Res. 2008 Oct-Dec;98(1-3):643-55 Authors: Kálmán L, Williams JC, Allen JP

Article GUID: 18853275

Effect of anions on the binding and oxidation of divalent manganese and iron in modified bacterial reaction centers.

Author(s): Tang K, Williams JC, Allen JP, Kálmán L

Biophys J. 2009 Apr 22;96(8):3295-304 Authors: Tang K, Williams JC, Allen JP, Kálmán L

Article GUID: 19383473

Light-induced conformational changes in photosynthetic reaction centers: dielectric relaxation in the vicinity of the dimer.

Author(s): Deshmukh SS, Williams JC, Allen JP, Kálmán L

Biochemistry. 2011 Jan 25;50(3):340-8 Authors: Deshmukh SS, Williams JC, Allen JP, Kálmán L

Article GUID: 21141811

Light-induced conformational changes in photosynthetic reaction centers: redox-regulated proton pathway near the dimer.

Author(s): Deshmukh SS, Williams JC, Allen JP, Kálmán L

Biochemistry. 2011 Apr 26;50(16):3321-31 Authors: Deshmukh SS, Williams JC, Allen JP, Kálmán L

Article GUID: 21410139

Light-induced conformational changes in photosynthetic reaction centers: impact of detergents and lipids on the electronic structure of the primary electron donor.

Author(s): Deshmukh SS, Akhavein H, Williams JC, Allen JP, Kalman L

Biochemistry. 2011 Jun 14;50(23):5249-62 Authors: Deshmukh SS, Akhavein H, Williams JC, Allen JP, Kalman L

Article GUID: 21561160


Title:Light-induced conformational changes in photosynthetic reaction centers: impact of detergents and lipids on the electronic structure of the primary electron donor.
Authors:Deshmukh SSAkhavein HWilliams JCAllen JPKalman L
Link:https://www.ncbi.nlm.nih.gov/pubmed/21561160?dopt=Abstract
Category:Biochemistry
PMID:21561160
Dept Affiliation: PHYSICS
1 Department of Physics, Concordia University, Montreal, Quebec H4B 1R6, Canada.

Description:

Light-induced conformational changes in photosynthetic reaction centers: impact of detergents and lipids on the electronic structure of the primary electron donor.

Biochemistry. 2011 Jun 14;50(23):5249-62

Authors: Deshmukh SS, Akhavein H, Williams JC, Allen JP, Kalman L

Abstract

Light-induced hypsochromic shifts of the Q(y) absorption band of the bacteriochlorophyll dimer (P) from 865 to 850 nm were identified using continuous illumination of dark-adapted reaction centers (RCs) from Rhodobacter capsulatus when dispersed in the most commonly used detergent, the zwitterionic lauryl N-dimethylamine-N-oxide. Such a shift is known to be the consequence of the decreased degree of delocalization of P. A 2-fold acceleration of the recovery kinetics of P(+) was found in RCs that underwent light-induced structural changes compared to those where the P-band position did not change. The light-induced shift was irreversible except in the presence of a secondary electron donor. Prolonged (15 min) illumination resulted in a shift in the position of the P-band even in neutral or negatively charged detergents. In contrast, RCs reconstituted into liposomes made from lipids with different headgroup charges showed light-induced shifts only if shorter fatty acid chains were used. The light-induced conformational changes caused a prominent decrease of the redox potential of P ranging from 120 to 160 mV depending on the detergent compared to the potential of P in dark-adapted reaction centers. The measured light-induced potential decreases were 55 to 85 mV larger than those reported for reaction centers where the P-band position remained at 865 nm. The influence of structural factors, such as the delocalization of the electron hole on P(+), the involvement of Tyr M210, and the hydrophobic mismatch between the thickness of the hydrophobic belt of the detergent micelles or the lipid bilayer and the RC protein, on the spectral features and electron transfer kinetics is discussed.

PMID: 21561160 [PubMed - indexed for MEDLINE]