Keyword search (3,448 papers available)


Exploring the decentralized treatment of sulfamethoxazole-contained poultry wastewater through vertical-flow multi-soil-layering systems in rural communities.

Author(s): Song P, Huang G, An C, Xin X, Zhang P, Chen X, Ren S, Xu Z, Yang X

Sulfamethoxazole (SMX) is the most widely distributed sulfonamide antibiotics detected in decentralized poultry wastewater in rural communities. As an economically-feasible and eco-friendly technology for decentralized wastewater treatment in rural areas, v...

Article GUID: 33065414

Exploration of nanocellulose washing agent for the green remediation of phenanthrene-contaminated soil.

Author(s): Yin J, Huang G, An C, Zhang P, Xin X, Feng R

Polycyclic aromatic hydrocarbons are hazardous contaminants existing ubiquitously in polluted soil. In this study, using nanocellulose (CNC) fluid as an eco-friendly agent was proposed for the first time in the remediation of phenanthrene (PHE) contaminated...

Article GUID: 33264936

Exploring the biophysicochemical alteration of green alga Asterococcus superbus interactively affected by nanoparticles, triclosan and illumination.

Author(s): Xin X, Huang G, An C, Lu C, Xiong W

J Hazard Mater. 2020 May 21;398:122855 Authors: Xin X, Huang G, An C, Lu C, Xiong W

Article GUID: 32473326

Exploring the use of ceramic disk filter coated with Ag/ZnO nanocomposites as an innovative approach for removing Escherichia coli from household drinking water.

Author(s): Huang J, Huang G, An C, Xin X, Chen X, Zhao Y, Feng R, Xiong W

Chemosphere. 2019 Dec 06;245:125545 Authors: Huang J, Huang G, An C, Xin X, Chen X, Zhao Y, Feng R, Xiong W

Article GUID: 31864067

A biophysiological perspective on enhanced nitrate removal from decentralized domestic sewage using gravitational-flow multi-soil-layering systems.

Author(s): Song P, Huang G, Hong Y, An C, Xin X, Zhang P

Chemosphere. 2019 Sep 14;240:124868 Authors: Song P, Huang G, Hong Y, An C, Xin X, Zhang P

Article GUID: 31542583

Insights into the Toxicity of Triclosan to Green Microalga Chlorococcum sp. Using Synchrotron-Based Fourier Transform Infrared Spectromicroscopy: Biophysiological Analyses and Roles of Environmental Factors.

Author(s): Xin X, Huang G, An C, Huang C, Weger H, Zhao S, Zhou Y, Rosendahl S

Environ Sci Technol. 2018 02 20;52(4):2295-2306 Authors: Xin X, Huang G, An C, Huang C, Weger H, Zhao S, Zhou Y, Rosendahl S

Article GUID: 29377676

Interactive Toxicity of Triclosan and Nano-TiO2 to Green Alga Eremosphaera viridis in Lake Erie: A New Perspective Based on Fourier Transform Infrared Spectromicroscopy and Synchrotron-Based X-ray Fluorescence Imaging.

Author(s): Xin X, Huang G, An C, Feng R

Environ Sci Technol. 2019 Jul 31;: Authors: Xin X, Huang G, An C, Feng R

Article GUID: 31322895

Biophysiological and factorial analyses in the treatment of rural domestic wastewater using multi-soil-layering systems.

Author(s): Shen J, Huang G, An C, Song P, Xin X, Yao Y, Zheng R

J Environ Manage. 2018 Nov 15;226:83-94 Authors: Shen J, Huang G, An C, Song P, Xin X, Yao Y, Zheng R

Article GUID: 30114576

Enhanced nitrogen removal in the treatment of rural domestic sewage using vertical-flow multi-soil-layering systems: Experimental and modeling insights.

Author(s): Hong Y, Huang G, An C, Song P, Xin X, Chen X, Zhang P, Zhao Y, Zheng R

J Environ Manage. 2019 Jun 15;240:273-284 Authors: Hong Y, Huang G, An C, Song P, Xin X, Chen X, Zhang P, Zhao Y, Zheng R

Article GUID: 30952048

Analyzing the Biochemical Alteration of Green Algae During Chronic Exposure to Triclosan Based on Synchrotron-Based Fourier Transform Infrared Spectromicroscopy.

Author(s): Xin X, Huang G, An C, Weger H, Cheng G, Shen J, Rosendahl S

Anal Chem. 2019 May 31;: Authors: Xin X, Huang G, An C, Weger H, Cheng G, Shen J, Rosendahl S

Article GUID: 31117408

Insights into Long-Term Toxicity of Triclosan to Freshwater Green Algae in Lake Erie.

Author(s): Xin X, Huang G, An C, Raina-Fulton R, Weger H

Environ Sci Technol. 2019 Feb 19;53(4):2189-2198 Authors: Xin X, Huang G, An C, Raina-Fulton R, Weger H

Article GUID: 30673261


Title:Exploring the use of ceramic disk filter coated with Ag/ZnO nanocomposites as an innovative approach for removing Escherichia coli from household drinking water.
Authors:Huang JHuang GAn CXin XChen XZhao YFeng RXiong W
Link:https://www.ncbi.nlm.nih.gov/pubmed/31864067?dopt=Abstract
DOI:10.1016/j.chemosphere.2019.125545
Category:Chemosphere
PMID:31864067
Dept Affiliation: ENCS
1 Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
2 Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada. Electronic address: huang@iseis.org.
3 Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada.
4 Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, A1B 3X5, Canada.
5 Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada.
6 MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
7 Canadian Light Source, Saskatoon, Saskatchewan, S7N 2 V3, Canada.
8 Stantec Consulting Ltd, Saskatoon, S7K 0K3, Canada.

Description:

Exploring the use of ceramic disk filter coated with Ag/ZnO nanocomposites as an innovative approach for removing Escherichia coli from household drinking water.

Chemosphere. 2019 Dec 06;245:125545

Authors: Huang J, Huang G, An C, Xin X, Chen X, Zhao Y, Feng R, Xiong W

Abstract

Ceramic water filter is suitable for low-income families and rural communities in developing countries to obtain safe drinking water because of its low cost and good performance. As an innovative effort, the ceramic disk filter coated with Ag/ZnO nanocomposites (AZ-CDF) was proposed in this study. The manufacture of AZ-CDFs was optimized by experiments based on the Box-Behnken design. The results of thermal field emission scanning electron microscopy (TFE-SEM) and very powerful elemental and structural probe employing radiation from a synchrotron (VESPERS) indicated that Ag/ZnO nanocomposites were mainly distributed on the upper surface of AZ-CDF. The antibacterial activity of AZ-CDF was investigated by detecting the variation of cell status and intracellular reactive oxygen species during a period of time using flow cytometry. Both non-photocatalytic and photocatalytic antibacterial activities of Ag/ZnO nanocomposite contributed to the bacterial reduction property of AZ-CDF. During filtration, the initial Escherichia coli (E. coli) concentration and illumination intensity also influenced the E. coli removal performance of AZ-CDF. When the light illumination intensity was 7000 Lux, AZ-CDF was appropriate to treat the water contaminated by E. coli concentration of less than 103 cfu/mL. Increasing illumination intensity resulted in the improvement of E. coli removal performance of AZ-CDF. It was concluded the main mechanisms for the E. coli removal of AZ-CDF were filtration, non-photocatalytic and photocatalytic antibacterial activities.

PMID: 31864067 [PubMed - as supplied by publisher]