Keyword search (3,448 papers available)


Controlled Microfluidic Synthesis of Biological Stimuli-Responsive Polymer Nanoparticles.

Author(s): Huang Y, Moini Jazani A, Howell EP, Oh JK, Moffitt MG

Microfluidic flow-directed self-assembly of biological stimuli-responsive block copolymers is demonstrated with dual-location cleavable linkages at the junction between hydrophilic and hydrophobic blocks and on pendant group within the hydrophobic blocks. O...

Article GUID: 31820915

Strong Headgroup Interactions Drive Highly Directional Growth and Unusual Phase Co-Existence in Self-Assembled Phenolic Films.

Author(s): Miclette Lamarche R, DeWolf C

ACS Appl Mater Interfaces. 2019 Nov 22;: Authors: Miclette Lamarche R, DeWolf C

Article GUID: 31710200

Smart Self-Assembled Nanosystem Based on Water-Soluble Pillararene and Rare-Earth-Doped Upconversion Nanoparticles for pH-Responsive Drug Delivery.

Author(s): Li H, Wei R, Yan GH, Sun J, Li C, Wang H, Shi L, Capobianco JA, Sun L

ACS Appl Mater Interfaces. 2018 Feb 07;10(5):4910-4920 Authors: Li H, Wei R, Yan GH, Sun J, Li C, Wang H, Shi L, Capobianco JA, Sun L

Article GUID: 29336139

Dual Activity of Rose Bengal Functionalized to Albumin-Coated Lanthanide-Doped Upconverting Nanoparticles: Targeting and Photodynamic Therapy.

Author(s): Sabri T, Pawelek PD, Capobianco JA

ACS Appl Mater Interfaces. 2018 Aug 15;10(32):26947-26953 Authors: Sabri T, Pawelek PD, Capobianco JA

Article GUID: 30028124


Title:Strong Headgroup Interactions Drive Highly Directional Growth and Unusual Phase Co-Existence in Self-Assembled Phenolic Films.
Authors:Miclette Lamarche RDeWolf C
Link:https://www.ncbi.nlm.nih.gov/pubmed/31710200?dopt=Abstract
DOI:10.1021/acsami.9b16958
Category:ACS Appl Mater Interfaces
PMID:31710200
Dept Affiliation: CNSR
1 Department of Chemistry and Biochemistry and Centre for NanoScience Research , Concordia University , 7141 Sherbrooke St. West , Montreal H4B 1R6 , Quebec , Canada.

Description:

Strong Headgroup Interactions Drive Highly Directional Growth and Unusual Phase Co-Existence in Self-Assembled Phenolic Films.

ACS Appl Mater Interfaces. 2019 Nov 22;:

Authors: Miclette Lamarche R, DeWolf C

Abstract

Self-assembled materials as surface coatings are used to confer functional properties to substrates, but such properties are highly dependent on molecular organization that can be controlled through tailoring the noncovalent interactions. For monomolecular films, it is well-known that strong, dipolar interactions can oppose line tension generating noncircular domain growth. While many surfactant films exhibit liquid crystalline arrangement of the alkyl chains, there are relatively few reports of crystalline headgroups. Here, we report the self-assembly of phenolic surfactants where the combination of hydrogen bonding and p-stacking leads to a herringbone arrangement of the headgroups, generating a molecular super-lattice that can be observed using grazing incidence X-ray diffraction; such an arrangement has been previously proposed for related phenolic systems but never experimentally observed. We also investigated using pH to modulate the intermolecular interactions and the response of the system in terms of molecular organization. The first hydroxyl deprotonation does not appear to impact the structure but has significant impact on the domain size and morphology. Higher pH generates both strong directional domain growth and a loss of the molecular lattice structure, attributed to a second deprotonation. In contrast, a shorter chain surfactant, lauryl gallate, forms a liquid expanded phase that can contract upon deprotonation. In the condensed phase, the deprotonation kinetics are unusually slow for which an internal charge re-organization is proposed. The slow kinetics leads to the co-existence of three distinct phases for a single component system over relatively long timescales and provides evidence of a liquid-mediated polymorphic transformation process in two-dimensional, soft-matter films. This work has implications for understanding the long-range ordering in aromatic self-assembled structures and the mechanisms underlying Langmuir monolayer polymorphism.

PMID: 31710200 [PubMed - as supplied by publisher]