Keyword search (3,448 papers available)


A bio-inspired synthesis of oxindoles by catalytic aerobic dual C-H functionalization of phenols.

Author(s): Huang Z, Askari MS, Esguerra KVN, Dai TY, Kwon O, Ottenwaelder X, Lumb JP

Chem Sci. 2016 Jan 01;7(1):358-369 Authors: Huang Z, Askari MS, Esguerra KVN, Dai TY, Kwon O, Ottenwaelder X, Lumb JP

Article GUID: 29861988

Lesion Orientation of O4-Alkylthymidine Influences Replication by Human DNA Polymerase η.

Author(s): O'Flaherty DK, Patra A, Su Y, Guengerich FP, Egli M, Wilds CJ

Chem Sci. 2016 Aug 01;7(8):4896-4904 Authors: O'Flaherty DK, Patra A, Su Y, Guengerich FP, Egli M, Wilds CJ

Article GUID: 27574558

LC-MS/MS suggests that hole hopping in cytochrome c peroxidase protects its heme from oxidative modification by excess H2O2.

Author(s): Kathiresan M, English AM

Chem Sci. 2017 Feb 01;8(2):1152-1162 Authors: Kathiresan M, English AM

Article GUID: 28451256


Title:A bio-inspired synthesis of oxindoles by catalytic aerobic dual C-H functionalization of phenols.
Authors:Huang ZAskari MSEsguerra KVNDai TYKwon OOttenwaelder XLumb JP
Link:https://www.ncbi.nlm.nih.gov/pubmed/29861988?dopt=Abstract
DOI:10.1039/c5sc02395e
Category:Chem Sci
PMID:29861988
Dept Affiliation: CHEMISTRY
1 Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada . Email: jean-philip.lumb@mcgill.ca.
2 Department of Chemistry and Biochemistry , Concordia University , Montreal , QC H4B 1R6 , Canada . Email: dr.x@concordia.ca.

Description:

A bio-inspired synthesis of oxindoles by catalytic aerobic dual C-H functionalization of phenols.

Chem Sci. 2016 Jan 01;7(1):358-369

Authors: Huang Z, Askari MS, Esguerra KVN, Dai TY, Kwon O, Ottenwaelder X, Lumb JP

Abstract

Nitrogen-containing heterocycles are fundamentally important to the function of pharmaceuticals, agrochemicals and materials. Herein, we report a bio-inspired approach to the synthesis of oxindoles, which couples the energetic requirements of dehydrogenative C-N bond formation to the reduction of molecular oxygen (O2). Our method is inspired by the biosynthesis of melanin pigments (melanogenesis), but diverges from the biosynthetic polymerization. Mechanistic analysis reveals the involvement of CuII-semiquinone radical intermediates, which enable dehydrogenative carbon-heteroatom bond formation that avoids a catechol/quinone redox couple. This mitagates the deleterious polarity reversal that results from phenolic dearomatization, and enables a high-yielding phenolic C-H functionalization under catalytic aerobic conditions. Our work highlights the broad synthetic utility and efficiency of forming C-N bonds via a catalytic aerobic dearomatization of phenols, which is currently an underdeveloped transformation.

PMID: 29861988 [PubMed]