Keyword search (3,448 papers available)


Insights into the Toxicity of Triclosan to Green Microalga Chlorococcum sp. Using Synchrotron-Based Fourier Transform Infrared Spectromicroscopy: Biophysiological Analyses and Roles of Environmental Factors.

Author(s): Xin X, Huang G, An C, Huang C, Weger H, Zhao S, Zhou Y, Rosendahl S

Environ Sci Technol. 2018 02 20;52(4):2295-2306 Authors: Xin X, Huang G, An C, Huang C, Weger H, Zhao S, Zhou Y, Rosendahl S

Article GUID: 29377676

Interactive Toxicity of Triclosan and Nano-TiO2 to Green Alga Eremosphaera viridis in Lake Erie: A New Perspective Based on Fourier Transform Infrared Spectromicroscopy and Synchrotron-Based X-ray Fluorescence Imaging.

Author(s): Xin X, Huang G, An C, Feng R

Environ Sci Technol. 2019 Jul 31;: Authors: Xin X, Huang G, An C, Feng R

Article GUID: 31322895

Elemental, isotopic, and spectroscopic assessment of chemical fractionation of dissolved organic matter sampled with a portable reverse osmosis system.

Author(s): Ouellet A, Catana D, Plouhinec JB, Lucotte M, Gélinas Y

Environ Sci Technol. 2008 Apr 01;42(7):2490-5 Authors: Ouellet A, Catana D, Plouhinec JB, Lucotte M, Gélinas Y

Article GUID: 18504986

Evaluating the Impact of Neighborhood Characteristics on Differences between Residential and Mobility-Based Exposures to Outdoor Air Pollution.

Author(s): Fallah-Shorshani M, Hatzopoulou M, Ross NA, Patterson Z, Weichenthal S

Environ Sci Technol. 2018 Sep 18;52(18):10777-10786 Authors: Fallah-Shorshani M, Hatzopoulou M, Ross NA, Patterson Z, Weichenthal S

Article GUID: 30119601

Differences in Riverine and Pond Water Dissolved Organic Matter Composition and Sources in Canadian High Arctic Watersheds Affected by Active Layer Detachments.

Author(s): Wang JJ, Lafrenière MJ, Lamoureux SF, Simpson AJ, Gélinas Y, Simpson MJ

Environ Sci Technol. 2018 Feb 06;52(3):1062-1071 Authors: Wang JJ, Lafrenière MJ, Lamoureux SF, Simpson AJ, Gélinas Y, Simpson MJ

Article GUID: 29301070

Insights into Long-Term Toxicity of Triclosan to Freshwater Green Algae in Lake Erie.

Author(s): Xin X, Huang G, An C, Raina-Fulton R, Weger H

Environ Sci Technol. 2019 Feb 19;53(4):2189-2198 Authors: Xin X, Huang G, An C, Raina-Fulton R, Weger H

Article GUID: 30673261


Title:Insights into Long-Term Toxicity of Triclosan to Freshwater Green Algae in Lake Erie.
Authors:Xin XHuang GAn CRaina-Fulton RWeger H
Link:https://www.ncbi.nlm.nih.gov/pubmed/30673261?dopt=Abstract
Category:Environ Sci Technol
PMID:30673261
Dept Affiliation: CHEMBIOCHEM
1 Institute for Energy, Environment and Sustainable Communities , University of Regina , Regina , Canada S4S 0A2.
2 Department of Building, Civil and Environmental Engineering , Concordia University , Montreal , Canada H3G 1M8.
3 Department of Chemistry and Biochemistry , University of Regina , Regina , Canada S4S 0A2.
4 Department of Biology , University of Regina , Regina , Canada S4S 0A2.

Description:

Insights into Long-Term Toxicity of Triclosan to Freshwater Green Algae in Lake Erie.

Environ Sci Technol. 2019 Feb 19;53(4):2189-2198

Authors: Xin X, Huang G, An C, Raina-Fulton R, Weger H

Abstract

This study explored the long-term impacts of a pulse disturbance of triclosan on five nontarget green algae in Lake Erie. Comprehensive analyses were performed using multiple physiological end points at community and subcellular scales. The toxic mechanism of triclosan in a wide range of concentrations was analyzed. The diverse sensitivity of algae species and complex interrelationships among multiple end points were revealed. The results showed the taxonomic groups of algae were the key issue for sensitivity difference. High doses of triclosan caused irreversible damage on algae, and environmentally relevant doses initiated either inhibition or stimulation. Smaller cells had higher sensitivity to triclosan, while larger cells had a wider size variation after exposure. Colonial cells were less sensitive than unicells. For chlorophyll, there were better dose-response relationships in Chlorococcum sp., Chlamydomonas reinhardtii CPCC 12 and 243 than Asterococcus superbus and Eremosphaera viridis. For chlorophyll fluorescence, Fv/ Fm was the most sensitive parameter, and qN was more sensitive than qP. Triclosan showed long-term effects on biochemical components, such as lipids, proteins, and nucleic acids. The findings will be helpful for a systematic and complete assessment of triclosan toxicity in natural waters and the development of appropriate strategies for its risk management.

PMID: 30673261 [PubMed - in process]