Keyword search (3,676 papers available)


Temperature drives caste-specific morphological clines in ants.

Author(s): Brassard F, Francoeur A, Lessard JP

1. The morphology of organisms relates to most aspects of their life history and autecology. As such, elucidating the drivers of morphological variation along environmental gradients might give insight into processes limiting species distributions. In eusoc...

Article GUID: 32858759

The interplay of nested biotic interactions and the abiotic environment regulates populations of a hypersymbiont.

Author(s): Mestre A, Poulin R, Holt RD, Barfield M, Clamp JC, Fernandez-Leborans G, Mesquita-Joanes F

J Anim Ecol. 2019 12;88(12):1998-2010 Authors: Mestre A, Poulin R, Holt RD, Barfield M, Clamp JC, Fernandez-Leborans G, Mesquita-Joanes F

Article GUID: 31408529

Population variation in density-dependent growth, mortality and their trade-off in a stream fish.

Author(s): Matte JM, Fraser DJ, Grant JWA

J Anim Ecol. 2019 Oct 23;: Authors: Matte JM, Fraser DJ, Grant JWA

Article GUID: 31642512

Early-life conditions determine the between-individual heterogeneity in plasticity of calving date in reindeer.

Author(s): Paoli A, Weladji RB, Holand Ø, Kumpula J

J Anim Ecol. 2019 Aug 20;: Authors: Paoli A, Weladji RB, Holand Ø, Kumpula J

Article GUID: 31429472

Ant community response to disturbance: A global synthesis.

Author(s): Lessard JP

J Anim Ecol. 2019 Mar;88(3):346-349 Authors: Lessard JP

Article GUID: 30854640


Title:Population variation in density-dependent growth, mortality and their trade-off in a stream fish.
Authors:Matte JMFraser DJGrant JWA
Link:https://www.ncbi.nlm.nih.gov/pubmed/31642512?dopt=Abstract
DOI:10.1111/1365-2656.13124
Category:J Anim Ecol
PMID:31642512
Dept Affiliation: BIOLOGY
1 Department of Biology, Concordia University, Montreal, QC, Canada.

Description:

Population variation in density-dependent growth, mortality and their trade-off in a stream fish.

J Anim Ecol. 2019 Oct 23;:

Authors: Matte JM, Fraser DJ, Grant JWA

Abstract

Important variation in the shape and strength of density-dependent growth and mortality is observed across animal populations. Understanding this population variation is critical for predicting density-dependent relationships in natural populations, but comparisons among studies are challenging as studies differ in methodologies and in local environmental conditions. Consequently, it is unclear whether: (1) the shape and strength of density-dependent growth and mortality are population-specific; (2) the potential trade-off between density-dependent growth and mortality differs among populations; and (3) environmental characteristics can be related to population differences in density-dependent relationships. To elucidate these uncertainties, we manipulated the density (0.3-7 fish/m2 ) of young-of-the-year brook trout (Salvelinus fontinalis) simultaneously in three neighboring populations in a field experiment in Newfoundland, Canada. Within each population, our experiment included both spatial (three sites per stream) and temporal (three consecutive summers) replication. We detected temporally consistent population variation in the shape of density-dependent growth (negative linear and negative logarithmic), but not for mortality (positive logarithmic). The strength of density-dependent growth across populations was reduced in sections with a high percentage of boulder substrate, whereas density-dependent mortality increased with increasing flow, water temperature, and more acidic pH. Neighbouring populations exhibited different mortality-growth trade-offs: the ratio of mortality-to-growth increased linearly with increasing density at different rates across populations (up to 4-fold differences), but also increased with increasing temperature. Our results are some of the first to demonstrate temporally consistent, population-specific density-dependent relationships and trade-offs at small spatial scales that match the magnitude of interspecific variation observed across the globe. Furthermore, key environmental characteristics explain some of these differences in predictable ways. Such population differences merit further attention in models of density-dependence and in science-based management of animal populations.

PMID: 31642512 [PubMed - as supplied by publisher]