Keyword search (3,448 papers available)


Evidence of Simultaneous Spectral Hole Burning Involving Two Tiers of the Protein Energy Landscape in Cytochrome b6f.

Author(s): Shafiei G, Levenberg A, Lujan MA, Picorel R, Zazubovich V

J Phys Chem B. 2019 Dec 12;: Authors: Shafiei G, Levenberg A, Lujan MA, Picorel R, Zazubovich V

Article GUID: 31763829

How Well Does the Hole-Burning Action Spectrum Represent the Site-Distribution Function of the Lowest-Energy State in Photosynthetic Pigment-Protein Complexes?

Author(s): Zazubovich V, Jankowiak R

J Phys Chem B. 2019 Jul 02;: Authors: Zazubovich V, Jankowiak R

Article GUID: 31265294

Comparison of Electronic and Physicochemical Properties between Imidazolium-Based and Pyridinium-Based Ionic Liquids.

Author(s): Wu C, De Visscher A, Gates ID

J Phys Chem B. 2018 07 05;122(26):6771-6780 Authors: Wu C, De Visscher A, Gates ID

Article GUID: 29889524

Low-temperature protein dynamics of the B800 molecules in the LH2 light-harvesting complex: spectral hole burning study and comparison with single photosynthetic complex spectroscopy.

Author(s): Grozdanov D, Herascu N, Reinot T, Jankowiak R, Zazubovich V

J Phys Chem B. 2010 Mar 18;114(10):3426-38 Authors: Grozdanov D, Herascu N, Reinot T, Jankowiak R, Zazubovich V

Article GUID: 20166717

Parameters of the protein energy landscapes of several light-harvesting complexes probed via spectral hole growth kinetics measurements.

Author(s): Herascu N, Najafi M, Amunts A, Pieper J, Irrgang KD, Picorel R, Seibert M, Zazubovich V

J Phys Chem B. 2011 Mar 31;115(12):2737-47 Authors: Herascu N, Najafi M, Amunts A, Pieper J, Irrgang KD, Picorel R, Seibert M, Zazubovich V

Article GUID: 21391534

Effects of the distributions of energy or charge transfer rates on spectral hole burning in pigment-protein complexes at low temperatures.

Author(s): Herascu N, Ahmouda S, Picorel R, Seibert M, Jankowiak R, Zazubovich V

J Phys Chem B. 2011 Dec 22;115(50):15098-109 Authors: Herascu N, Ahmouda S, Picorel R, Seibert M, Jankowiak R, Zazubovich V

Article GUID: 22046956

Spectral hole burning, recovery, and thermocycling in chlorophyll-protein complexes: distributions of barriers on the protein energy landscape.

Author(s): Najafi M, Herascu N, Seibert M, Picorel R, Jankowiak R, Zazubovich V

J Phys Chem B. 2012 Sep 27;116(38):11780-90 Authors: Najafi M, Herascu N, Seibert M, Picorel R, Jankowiak R, Zazubovich V

Article GUID: 22957798

Modeling of various optical spectra in the presence of slow excitation energy transfer in dimers and trimers with weak interpigment coupling: FMO as an example.

Author(s): Herascu N, Kell A, Acharya K, Jankowiak R, Blankenship RE, Zazubovich V

J Phys Chem B. 2014 Feb 27;118(8):2032-40 Authors: Herascu N, Kell A, Acharya K, Jankowiak R, Blankenship RE, Zazubovich V

Article GUID: 24506338

Fluorescence line narrowing and Δ-FLN spectra in the presence of excitation energy transfer between weakly coupled chromophores.

Author(s): Zazubovich V

J Phys Chem B. 2014 Nov 26;118(47):13535-43 Authors: Zazubovich V

Article GUID: 25369116

Conformational Changes in Pigment-Protein Complexes at Low Temperatures-Spectral Memory and a Possibility of Cooperative Effects.

Author(s): Najafi M, Herascu N, Shafiei G, Picorel R, Zazubovich V

J Phys Chem B. 2015 Jun 11;119(23):6930-40 Authors: Najafi M, Herascu N, Shafiei G, Picorel R, Zazubovich V

Article GUID: 25985255

Monte Carlo Modeling of Spectral Diffusion Employing Multiwell Protein Energy Landscapes: Application to Pigment-Protein Complexes Involved in Photosynthesis.

Author(s): Najafi M, Zazubovich V

J Phys Chem B. 2015 Jun 25;119(25):7911-21 Authors: Najafi M, Zazubovich V

Article GUID: 26020801

Probing Energy Landscapes of Cytochrome b6f with Spectral Hole Burning: Effects of Deuterated Solvent and Detergent.

Author(s): Levenberg A, Shafiei G, Lujan MA, Giannacopoulos S, Picorel R, Zazubovich V

J Phys Chem B. 2017 10 26;121(42):9848-9858 Authors: Levenberg A, Shafiei G, Lujan MA, Giannacopoulos S, Picorel R, Zazubovich V

Article GUID: 28956922

Effect of Saturated Very Long-Chain Fatty Acids on the Organization of Lipid Membranes: A Study Combining (2)H NMR Spectroscopy and Molecular Dynamics Simulations

Author(s): Adrian Paz Ramos

Little is known about the interaction of very long-chain saturated fatty acids (VLCFAs) with biological membranes. However, this could play an important role on interleaflet interactions and signal transduction mechanisms in cells. The aim of this work is t...

Article GUID: 27351151

Spectral Hole Burning in Cyanobacterial Photosystem I with P700 in Oxidized and Neutral States.

Author(s): Herascu N, Hunter MS, Shafiei G, Najafi M, Johnson TW, Fromme P, Zazubovich V

J Phys Chem B. 2016;120(40):10483-10495 Authors: Herascu N, Hunter MS, Shafiei G, Najafi M, Johnson TW, Fromme P, Zazubovich V

Article GUID: 27661089

Mechanism of the Nitric Oxide Dioxygenase Reaction of Mycobacterium tuberculosis Hemoglobin N

Author(s): Lavinia A Carabet

Many globins convert ^(•)NO to innocuous NO(3)^(-) through their nitric oxide dioxygenase (NOD) activity. Mycobacterium tuberculosis fights the oxidative and nitrosative stress imposed by its host (the toxic effects of O(2)^(•-) and ^(•)NO species and their...

Article GUID: 28835102

Cation-π Interactions between Quaternary Ammonium Ions and Amino Acid Aromatic Groups in Aqueous Solution

Author(s): Esam A Orabi

Cation-p interactions play important roles in the stabilization of protein structures and protein-ligand complexes. They contribute to the binding of quaternary ammonium ligands (mainly RNH(3)^(+) and RN(CH(3))(3)^(+)) to various protein receptors and are l...

Article GUID: 29397727

Modeling Protein S-Aromatic Motifs Reveals Their Structural and Redox Flexibility

Author(s): Esam A Orabi

S-aromatic motifs are important noncovalent forces for protein stability and function but remain poorly understood. Hence, we performed quantum calculations at the MP2(full)/6-311++G(d,p) level on complexes between Cys (H(2)S, MeSH) and Met (Me(2)S) models ...

Article GUID: 29533644


Title:Spectral Hole Burning in Cyanobacterial Photosystem I with P700 in Oxidized and Neutral States.
Authors:Herascu NHunter MSShafiei GNajafi MJohnson TWFromme PZazubovich V
Link:https://www.ncbi.nlm.nih.gov/pubmed/27661089?dopt=Abstract
Category:J Phys Chem B
PMID:27661089
Dept Affiliation: CHEMBIOCHEM
1 Department of Physics, Concordia University , 7141 Sherbrooke Street West, Montreal, H4B 1R4, Quebec, Canada.
2 Department of Chemistry and Biochemistry, Arizona State University , Tempe, Arizona, United States.
3 Department of Chemistry, Susquehanna University , Selinsgrove, Pennsylvania, United States.

Description:

Spectral Hole Burning in Cyanobacterial Photosystem I with P700 in Oxidized and Neutral States.

J Phys Chem B. 2016;120(40):10483-10495

Authors: Herascu N, Hunter MS, Shafiei G, Najafi M, Johnson TW, Fromme P, Zazubovich V

Abstract

We explored the rich satellite hole structures emerging as a result of spectral hole burning in cyanobacterial photosystem I (PSI) and demonstrated that hole burning properties of PSI, particularly at high resolution, are strongly affected by the oxidation state of the primary donor P700, as P700+ effectively quenches the excitations of the lowest-energy antenna states responsible for fluorescence. Obtaining better control of this variable will be crucial for high-resolution ensemble experiments on protein energy landscapes in PSI. The separate nonphotochemical spectral hole burning (NPHB) signatures of various red antenna states were obtained, allowing for additional constraints on excitonic structure-based calculations. Preliminary evidence is presented for an additional red state of PSI of T. elongatus peaked at 712.6 nm, distinct from previously reported C708 and C715 states and possibly involving chlorophyll B15. Excitation at wavelengths as long as 800 nm results in charge separation at cryogenic temperatures in PSI also in Synechocystis sp. PCC 6803. Both the "P700+ minus P700" holes and nonphotochemical spectral holes were subjected to thermocycling. The distribution of barriers manifesting in recovery of the "P700+ minus P700" signature contains two components in sample-dependent proportions, likely reflecting the percentages of FA and FB clusters being successfully prereduced before the optical experiment. The barrier distribution for the recovery of the lower-energy nonphotochemical spectral holes resembles those observed for other pigment-protein complexes, suggesting similar structural elements are responsible for NPHB. Higher-energy components exhibit evidence of "domino effects" such as shifts of certain bands persisting past the lower-energy hole recovery. Thus, conformational changes triggered by excitation of one pigment likely can affect multiple pigments in this tightly packed system.

PMID: 27661089 [PubMed]