Keyword search (3,448 papers available)


Analysis of biochar-mortar composite as a humidity control material to improve the building energy and hygrothermal performance.

Author(s): Park JH, Kim YU, Jeon J, Yun BY, Kang Y, Kim S

This study suggests a new perspective of biochar as a building material that improve not only for the strength but also hygrothermal properties. Biochar has a high porosity and surface area created by pyrolysis. It can be suitably used as a porous material ...

Article GUID: 33611181

Role of organic matter and microbial communities in mercury retention and methylation in sediments near run-of-river hydroelectric dams.

Author(s): Millera Ferriz L, Ponton DE, Storck V, Leclerc M, Bilodeau F, Walsh DA, Amyot M

Run-of-river power plants (RoRs) are expected to triple in number over the next decades in Canada. These structures are not anticipated to considerably promote the mobilization and transport of mercury (Hg) and its subsequent microbial transformation to met...

Article GUID: 33609815

Assessing the impact of COVID-19 pandemic on urban transportation and air quality in Canada.

Author(s): Tian X, An C, Chen Z, Tian Z

The global outbreak and spread of COVID-19 had a significant impact on the environment of urban areas. This study aimed to provide a new insight into the urban transportation and air pollutant emission of representative Canadian cities impacted by this pand...

Article GUID: 33401062

PM2.5 and hospital admissions among Medicare enrollees with chronic debilitating brain disorders.

Author(s): Yitshak-Sade M, Nethery R, Schwartz JD, Mealli F, Dominici F, Di Q, Abu Awad Y, Ifergane G, Zanobetti A...

BACKGROUND: Although long-term exposure to particulate matter METHODS: We constructed daily zipcode counts of hospital admissions of Medicare beneficiaries older than 65 across the United-States (2...

Article GUID: 33065503

Removal of arsenic from water through ceramic filter modified by nano-CeO2: A cost-effective approach for remote areas.

Author(s): Yang X; Huang G; An C; Chen X; Shen J; Yin J; Song P; Xu Z; Li Y;

The groundwater with high arsenic concentration is widespread, especially in many remote areas of developing countries. Arsenic existing in drinking water sources has a high risk to human health. In this study, an innovative effort to remove As(V) from wate...

Article GUID: 33182193

A comprehensive investigation of industrial plastic pellets on beaches across the Laurentian Great Lakes and the factors governing their distribution.

Author(s): Corcoran PL, de Haan Ward J, Arturo IA, Belontz SL, Moore T, Hill-Svehla CM, Robertson K, Wood K, Jazvac K

Sci Total Environ. 2020 Jul 25;747:141227 Authors: Corcoran PL, de Haan Ward J, Arturo IA, Belontz SL, Moore T, Hill-Svehla CM, Robertson K, Wood K, Jazvac K

Article GUID: 32781316

The dark cloud with a silver lining: Assessing the impact of the SARS COVID-19 pandemic on the global environment.

Author(s): Lal P, Kumar A, Kumar S, Kumari S, Saikia P, Dayanandan A, Adhikari D, Khan ML

Sci Total Environ. 2020 May 08;732:139297 Authors: Lal P, Kumar A, Kumar S, Kumari S, Saikia P, Dayanandan A, Adhikari D, Khan ML

Article GUID: 32408041

The NSERC Canadian Lake Pulse Network: A national assessment of lake health providing science for water management in a changing climate.

Author(s): Huot Y, Brown CA, Potvin G, Antoniades D, Baulch HM, Beisner BE, Bélanger S, Brazeau S, Cabana H, Cardille JA, Del Giorgio PA, Gregory-Eaves...

Sci Total Environ. 2019 Aug 04;695:133668 Authors: Huot Y, Brown CA, Potvin G, Antoniades D, Baulch HM, Beisner BE, Bélanger S, Brazeau S, Cabana H, Cardille JA, Del Giorgio PA, Gregory-Eaves...

Article GUID: 31419692

Treatment of rural domestic wastewater using multi-soil-layering systems: Performance evaluation, factorial analysis and numerical modeling.

Author(s): Song P, Huang G, An C, Shen J, Zhang P, Chen X, Shen J, Yao Y, Zheng R, Sun C

Sci Total Environ. 2018 Dec 10;644:536-546 Authors: Song P, Huang G, An C, Shen J, Zhang P, Chen X, Shen J, Yao Y, Zheng R, Sun C

Article GUID: 29990903

Simulating micro-scale thermal interactions in different building environments for mitigating urban heat islands.

Author(s): Chatterjee S, Khan A, Dinda A, Mithun S, Khatun R, Akbari H, Kusaka H, Mitra C, Bhatti SS, Doan QV, Wang Y

Sci Total Environ. 2019 May 01;663:610-631 Authors: Chatterjee S, Khan A, Dinda A, Mithun S, Khatun R, Akbari H, Kusaka H, Mitra C, Bhatti SS, Doan QV, Wang Y

Article GUID: 30731408

Anthropogenic and natural methane emissions from a shale gas exploration area of Quebec, Canada.

Author(s): Pinti DL, Gelinas Y, Moritz AM, Larocque M, Sano Y

Sci Total Environ. 2016 Oct 01;566-567:1329-1338 Authors: Pinti DL, Gelinas Y, Moritz AM, Larocque M, Sano Y

Article GUID: 27267724


Title:Role of organic matter and microbial communities in mercury retention and methylation in sediments near run-of-river hydroelectric dams.
Authors:Millera Ferriz LPonton DEStorck VLeclerc MBilodeau FWalsh DAAmyot M
Link:https://www.ncbi.nlm.nih.gov/pubmed/33609815
DOI:10.1016/j.scitotenv.2021.145686
Category:Sci Total Environ
PMID:33609815
Dept Affiliation: BIOLOGY
1 Département de sciences biologiques, Université de Montréal, Montreal H2V 2S9, QC, Canada; Biology Department, Concordia University, Montreal H4B 1R6, QC, Canada; GRIL, Groupe de Recherche Interuniversitaire en Limnologie, Département de sciences biologiques, Université de Montréal, Campus MIL, Montreal H3C 3J7, QC, Canada.
2 Département de sciences biologiques, Université de Montréal, Montreal H2V 2S9, QC, Canada; GRIL, Groupe de Recherche Interuniversitaire en Limnologie, Département de sciences biologiques, Université de Montréal, Campus MIL, Montreal H3C 3J7, QC, Canada.
3 Département de sciences biologiques, Université de Montréal, Montreal H2V 2S9, QC, Canada; Biology Department, Concordia University, Montreal H4B 1R6, QC, Canada.
4 Hydro-Québec Production, Environment Department, Montreal, QC, Canada.
5 Biology Department, Concordia University, Montreal H4B 1R6, QC, Canada; GRIL, Groupe de Recherche Interuniversitaire en Limnologie, Département de sciences biologiques, Université de Montréal, Campus MIL, Montreal H3C 3J7, QC, Canada.
6 Département de sciences biologiques, Université de Montréal, Montreal H2V 2S9, QC, Canada; GRIL, Groupe de Recherche Interuniversitaire en Limnologie, Département de sciences biologiques, Université de Montréal, Campus MIL, Montreal H3C 3J7, QC, Canada. Electronic address: m.amyot@umontreal.ca.

Description:

Role of organic matter and microbial communities in mercury retention and methylation in sediments near run-of-river hydroelectric dams.

Sci Total Environ. 2021 Feb 06; 774:145686

Authors: Millera Ferriz L, Ponton DE, Storck V, Leclerc M, Bilodeau F, Walsh DA, Amyot M

Abstract

Run-of-river power plants (RoRs) are expected to triple in number over the next decades in Canada. These structures are not anticipated to considerably promote the mobilization and transport of mercury (Hg) and its subsequent microbial transformation to methylmercury (MeHg), a neurotoxin able to biomagnify in food webs up to humans. To test whether construction of RoRs had an effect on Hg transport and transformation, we studied Hg and MeHg concentrations, organic matter contents and methylating microbial community abundance and composition in the sediments of a section of the St. Maurice River (Quebec, Canada). This river section has been affected by the construction of two RoR dams and its watershed has been disturbed by a forest fire, logging, and the construction of wetlands. Higher total Hg (THg) and MeHg concentrations were observed in the surface sediments of the flooded sites upstream of the RoRs. These peaks in THg and MeHg were correlated with organic matter proportions in the sediments (r2 = 0.87 and 0.82, respectively). In contrast, the proportion of MeHg, a proxy for methylation potential, was best explained by the carbon to nitrogen ratio suggesting the importance of terrigenous organic matter as labile substrate for Hg methylation in this system. Metagenomic analysis of Hg-methylating communities based on the hgcA functional gene marker indicated an abundance of methanogens, sulfate reducers and fermenters, suggesting that these metabolic guilds may be primary Hg methylators in these surface sediments. We propose that RoR pondages act as traps for sediments, organic matter and Hg, and that this retention can be amplified by other disturbances of the watershed such as forest fire and logging. RoR flooded sites can be conducive to Hg methylation in sediments and may act as gateways for bioaccumulation and biomagnification of MeHg along food webs, particularly in disturbed watersheds.

PMID: 33609815 [PubMed - as supplied by publisher]