Keyword search (3,448 papers available)


Transcriptomic analysis suggests the inhibition of DNA damage repair in green alga Raphidocelis subcapitata exposed to roxithromycin.

Author(s): Guo J, Bai Y, Chen Z, Mo J, Li Q, Sun H, Zhang Q

Ecotoxicol Environ Saf. 2020 Jun 03;201:110737 Authors: Guo J, Bai Y, Chen Z, Mo J, Li Q, Sun H, Zhang Q

Article GUID: 32505758

Four Aromatic Intradiol Ring Cleavage Dioxygenases from Aspergillus niger.

Author(s): Semana P, Powlowski J

Ring cleavage dioxygenases catalyze the critical ring-opening step in the catabolism of aromatic compounds. The archetypal filamentous fungus Aspergillus niger previously has been reported to be able to utilize a range of monocyclic aromatic compounds as so...

Article GUID: 31540981

How Well Does the Hole-Burning Action Spectrum Represent the Site-Distribution Function of the Lowest-Energy State in Photosynthetic Pigment-Protein Complexes?

Author(s): Zazubovich V, Jankowiak R

J Phys Chem B. 2019 Jul 02;: Authors: Zazubovich V, Jankowiak R

Article GUID: 31265294

Virtual screening, docking, and dynamics of potential new inhibitors of dihydrofolate reductase from Yersinia pestis.

Author(s): Bastos Lda C, de Souza FR, Guimarães AP, Sirouspour M, Cuya Guizado TR, Forgione P, Ramalho TC, França TC

J Biomol Struct Dyn. 2016 Oct;34(10):2184-98 Authors: Bastos Lda C, de Souza FR, Guimarães AP, Sirouspour M, Cuya Guizado TR, Forgione P, Ramalho TC, França TC

Article GUID: 26494420

Docking and molecular dynamics studies of peripheral site ligand-oximes as reactivators of sarin-inhibited human acetylcholinesterase.

Author(s): de Almeida JS, Cuya Guizado TR, Guimarães AP, Ramalho TC, Gonçalves AS, de Koning MC, França TC

J Biomol Struct Dyn. 2016 Dec;34(12):2632-2642 Authors: de Almeida JS, Cuya Guizado TR, Guimarães AP, Ramalho TC, Gonçalves AS, de Koning MC, França TC

Article GUID: 26612005

O(6)-Alkylguanine DNA Alkyltransferase Repair Activity Towards Intrastrand Cross-Linked DNA is Influenced by the Internucleotide Linkage.

Author(s): O'Flaherty DK, Wilds CJ

Chem Asian J. 2016 Feb 18;11(4):576-83 Authors: O'Flaherty DK, Wilds CJ

Article GUID: 26692563

A bio-inspired synthesis of oxindoles by catalytic aerobic dual C-H functionalization of phenols.

Author(s): Huang Z, Askari MS, Esguerra KVN, Dai TY, Kwon O, Ottenwaelder X, Lumb JP

Chem Sci. 2016 Jan 01;7(1):358-369 Authors: Huang Z, Askari MS, Esguerra KVN, Dai TY, Kwon O, Ottenwaelder X, Lumb JP

Article GUID: 29861988

The Chemical Ecology of Predatory Soil Bacteria.

Author(s): Findlay BL

ACS Chem Biol. 2016 06 17;11(6):1502-10 Authors: Findlay BL

Article GUID: 27035738

Mechanistic studies of new oximes reactivators of human butyryl cholinesterase inhibited by cyclosarin and sarin.

Author(s): de Lima WE, Francisco A, da Cunha EF, Radic Z, Taylor P, França TC, Ramalho TC

J Biomol Struct Dyn. 2017 May;35(6):1272-1282 Authors: de Lima WE, Francisco A, da Cunha EF, Radic Z, Taylor P, França TC, Ramalho TC

Article GUID: 27125569


Title:A bio-inspired synthesis of oxindoles by catalytic aerobic dual C-H functionalization of phenols.
Authors:Huang ZAskari MSEsguerra KVNDai TYKwon OOttenwaelder XLumb JP
Link:https://www.ncbi.nlm.nih.gov/pubmed/29861988?dopt=Abstract
DOI:10.1039/c5sc02395e
Category:Chem Sci
PMID:29861988
Dept Affiliation: CHEMISTRY
1 Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada . Email: jean-philip.lumb@mcgill.ca.
2 Department of Chemistry and Biochemistry , Concordia University , Montreal , QC H4B 1R6 , Canada . Email: dr.x@concordia.ca.

Description:

A bio-inspired synthesis of oxindoles by catalytic aerobic dual C-H functionalization of phenols.

Chem Sci. 2016 Jan 01;7(1):358-369

Authors: Huang Z, Askari MS, Esguerra KVN, Dai TY, Kwon O, Ottenwaelder X, Lumb JP

Abstract

Nitrogen-containing heterocycles are fundamentally important to the function of pharmaceuticals, agrochemicals and materials. Herein, we report a bio-inspired approach to the synthesis of oxindoles, which couples the energetic requirements of dehydrogenative C-N bond formation to the reduction of molecular oxygen (O2). Our method is inspired by the biosynthesis of melanin pigments (melanogenesis), but diverges from the biosynthetic polymerization. Mechanistic analysis reveals the involvement of CuII-semiquinone radical intermediates, which enable dehydrogenative carbon-heteroatom bond formation that avoids a catechol/quinone redox couple. This mitagates the deleterious polarity reversal that results from phenolic dearomatization, and enables a high-yielding phenolic C-H functionalization under catalytic aerobic conditions. Our work highlights the broad synthetic utility and efficiency of forming C-N bonds via a catalytic aerobic dearomatization of phenols, which is currently an underdeveloped transformation.

PMID: 29861988 [PubMed]