Reset filters

Search publications


By keyword
By department

No publications found.

 

Visualization of SNARE-Mediated Organelle Membrane Hemifusion by Electron Microscopy.

Authors: Mattie SKazmirchuk TMui JVali HBrett CL


Affiliations

1 Department of Biology, Concordia University, Montréal, QC, Canada.
2 Montreal Neurological Hospital and Institute, McGill University, Montréal, QC, Canada.
3 Facility for Electron Microscopy Research, Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada.
4 Department of Biology, Concordia University, Montréal, QC, Canada. christopher.brett@concordia.ca.

Description

Visualization of SNARE-Mediated Organelle Membrane Hemifusion by Electron Microscopy.

Methods Mol Biol. 2019;1860:361-377

Authors: Mattie S, Kazmirchuk T, Mui J, Vali H, Brett CL

Abstract

SNARE-mediated membrane fusion is required for membrane trafficking as well as organelle biogenesis and homeostasis. The membrane fusion reaction involves sequential formation of hemifusion intermediates, whereby lipid monolayers partially mix on route to complete bilayer merger. Studies of the Saccharomyces cerevisiae lysosomal vacuole have revealed many of the fundamental mechanisms that drive the membrane fusion process, as well as features unique to organelle fusion. However, until recently, it has not been amenable to electron microscopy methods that have been invaluable for studying hemifusion in other model systems. Herein, we describe a method to visualize hemifusion intermediates during homotypic vacuole membrane fusion in vitro by transmission electron microscopy (TEM), electron tomography, and cryogenic electron microscopy (cryoEM). This method facilitates acquisition of invaluable ultrastructural data needed to comprehensively understand how fusogenic lipids and proteins contribute to SNARE-mediated membrane fusion-by-hemifusion and the unique features of organelle versus small-vesicle fusion.

PMID: 30317518 [PubMed - indexed for MEDLINE]


Keywords: Cryogenic electron microscopy (cryoEM)HemifusionLipid bilayer mergerLysosomeMembrane fusionSNARETomographyTransmission electron microscopy (TEM)Vacuole


Links

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30317518?dopt=Abstract

DOI: 10.1007/978-1-4939-8760-3_24