Keyword search (3,448 papers available)


Wavelength-Selective Nonlinear Imaging and Photo-Induced Cell Damage by Dielectric Harmonic Nanoparticles.

Author(s): Kilin V, Campargue G, Fureraj I, Sakong S, Sabri T, Riporto F, Vieren A, Mugnier Y, Mas C, Staedler D, Collins JM, Bonacina L, Vogel A, Capobianco JA, Wolf JP

ACS Nano. 2020 Apr 16;: Authors: Kilin V, Campargue G, Fureraj I, Sakong S, Sabri T, Riporto F, Vieren A, Mugnier Y, Mas C, Staedler D, Collins JM, Bonacina L, Vogel A, Capobianco JA, Wolf JP

Article GUID: 32282184

Optically Stimulated Nanodosimeters with High Storage Capacity.

Author(s): Van der Heggen D, Cooper DR, Tesson M, Joos JJ, Seuntjens J, Capobianco JA, Smet PF

Nanomaterials (Basel). 2019 Aug 05;9(8): Authors: Van der Heggen D, Cooper DR, Tesson M, Joos JJ, Seuntjens J, Capobianco JA, Smet PF

Article GUID: 31387200

Heme nitrosylation of deoxyhemoglobin by s-nitrosoglutathione requires copper.

Author(s): Romeo AA, Capobianco JA, English AM

J Biol Chem. 2002 Jul 05;277(27):24135-41 Authors: Romeo AA, Capobianco JA, English AM

Article GUID: 11970954

Superoxide dismutase targets NO from GSNO to Cysbeta93 of oxyhemoglobin in concentrated but not dilute solutions of the protein.

Author(s): Romeo AA, Capobianco JA, English AM

J Am Chem Soc. 2003 Nov 26;125(47):14370-8 Authors: Romeo AA, Capobianco JA, English AM

Article GUID: 14624585

Intrinsic Time-Tunable Emissions in Core-Shell Upconverting Nanoparticle Systems.

Author(s): Tessitore G, Maurizio SL, Sabri T, Capobianco JA

Angew Chem Int Ed Engl. 2019 Jun 04;: Authors: Tessitore G, Maurizio SL, Sabri T, Capobianco JA

Article GUID: 31161694

Counting the Photons: Determining the Absolute Storage Capacity of Persistent Phosphors.

Author(s): Van der Heggen D, Joos JJ, Rodríguez Burbano DC, Capobianco JA, Smet PF

Materials (Basel). 2017 Jul 28;10(8): Authors: Van der Heggen D, Joos JJ, Rodríguez Burbano DC, Capobianco JA, Smet PF

Article GUID: 28773228

Smart Self-Assembled Nanosystem Based on Water-Soluble Pillararene and Rare-Earth-Doped Upconversion Nanoparticles for pH-Responsive Drug Delivery.

Author(s): Li H, Wei R, Yan GH, Sun J, Li C, Wang H, Shi L, Capobianco JA, Sun L

ACS Appl Mater Interfaces. 2018 Feb 07;10(5):4910-4920 Authors: Li H, Wei R, Yan GH, Sun J, Li C, Wang H, Shi L, Capobianco JA, Sun L

Article GUID: 29336139

A NIR-responsive azobenzene-based supramolecular hydrogel using upconverting nanoparticles.

Author(s): Mandl GA, Rojas-Gutierrez PA, Capobianco JA

Chem Commun (Camb). 2018 Jun 05;54(46):5847-5850 Authors: Mandl GA, Rojas-Gutierrez PA, Capobianco JA

Article GUID: 29726556

Dual Activity of Rose Bengal Functionalized to Albumin-Coated Lanthanide-Doped Upconverting Nanoparticles: Targeting and Photodynamic Therapy.

Author(s): Sabri T, Pawelek PD, Capobianco JA

ACS Appl Mater Interfaces. 2018 Aug 15;10(32):26947-26953 Authors: Sabri T, Pawelek PD, Capobianco JA

Article GUID: 30028124

Perspective: lanthanide-doped upconverting nanoparticles.

Author(s): Mandl GA, Cooper DR, Hirsch T, Seuntjens J, Capobianco JA

Methods Appl Fluoresc. 2019 Jan 21;7(1):012004 Authors: Mandl GA, Cooper DR, Hirsch T, Seuntjens J, Capobianco JA

Article GUID: 30572318

Recent insights into upconverting nanoparticles: spectroscopy, modeling, and routes to improved luminescence.

Author(s): Tessitore G, Mandl GA, Brik MG, Park W, Capobianco JA

Nanoscale. 2019 May 23;: Authors: Tessitore G, Mandl GA, Brik MG, Park W, Capobianco JA

Article GUID: 31120083


Title:Heme nitrosylation of deoxyhemoglobin by s-nitrosoglutathione requires copper.
Authors:Romeo AACapobianco JAEnglish AM
Link:https://www.ncbi.nlm.nih.gov/pubmed/11970954?dopt=Abstract
DOI:10.1074/jbc.M202221200
Category:J Biol Chem
PMID:11970954
Dept Affiliation: CHEMBIOCHEM
1 Department of Chemistry and Biochemistry, Concordia University, 1455 de Maisonneuve Boulevard West, Montreal, Quebec H3G 1M8, Canada.

Description:

Heme nitrosylation of deoxyhemoglobin by s-nitrosoglutathione requires copper.

J Biol Chem. 2002 Jul 05;277(27):24135-41

Authors: Romeo AA, Capobianco JA, English AM

Abstract

NO reactions with hemoglobin (Hb) likely play a role in blood pressure regulation. For example, NO exchange between Hb and S-nitrosoglutathione (GSNO) has been reported in vitro. Here we examine the reaction between GSNO and deoxyHb (HbFe(II)) in the presence of both Cu(I) (2,9-dimethyl-1, 10-phenanthroline (neocuproine)) and Cu(II) (diethylenetriamine-N,N,N',N",N"-pentaacetic acid) chelators using a copper-depleted Hb solution. Spectroscopic analysis of deoxyHb (HbFe(II))/GSNO incubates shows prompt formation (<5 min) of approximately 100% heme-nitrosylated Hb (HbFe(II)NO) in the absence of chelators, 46% in the presence of diethylenetriamine-N,N,N',N",N"-pentaacetic acid, and 25% in the presence of neocuproine. Negligible (<2%) HbFe(II)NO was detected when neocuproine was added to copper-depleted HbFe(II)/GSNO incubates. Thus, HbFe(II)NO formation via a mechanism involving free NO generated by Cu(I) catalysis of GSNO breakdown is proposed. GSH is a source of reducing equivalents because extensive GSSG was detected in HbFe(II)/GSNO incubates in the absence of metal chelators. No S-nitrosation of HbFe(II) was detected under any conditions. In contrast, the NO released from GSNO is directed to Cysbeta(93) of oxyHb in the absence of chelators, but only metHb formation is observed in the presence of chelators. Our findings reveal that the reactions of GSNO and Hb are controlled by copper and that metal chelators do not fully inhibit NO release from GSNO in Hb-containing solutions.

PMID: 11970954 [PubMed - indexed for MEDLINE]