Keyword search (3,676 papers available)


Evaluating the correlation between genome-wide diversity and the release of plastic phenotypic variation in experimental translocations to novel natural environments.

Author(s): Yates MC, Fraser DJ

Phenotypic reaction norms are often shaped and constrained by selection and are important for allowing organisms to respond to environmental change. However, selection cannot constrain reaction norms for environmental conditions that populations have not ex...

Article GUID: 33274531

Size reductions and genomic changes within two generations in wild walleye populations: associated with harvest?

Author(s): Bowles E, Marin K, Mogensen S, MacLeod P, Fraser DJ

Evol Appl. 2020 Jul;13(6):1128-1144 Authors: Bowles E, Marin K, Mogensen S, MacLeod P, Fraser DJ

Article GUID: 32684951

The relationship between eDNA particle concentration and organism abundance in nature is strengthened by allometric scaling.

Author(s): Yates MC, Glaser D, Post J, Cristescu ME, Fraser DJ, Derry AM

Mol Ecol. 2020 Jul 07;: Authors: Yates MC, Glaser D, Post J, Cristescu ME, Fraser DJ, Derry AM

Article GUID: 32638451

Small population size and low genomic diversity have no effect on fitness in experimental translocations of a wild fish.

Author(s): Yates MC, Bowles E, Fraser DJ

Proc Biol Sci. 2019 Dec 04;286(1916):20191989 Authors: Yates MC, Bowles E, Fraser DJ

Article GUID: 31771476

Population variation in density-dependent growth, mortality and their trade-off in a stream fish.

Author(s): Matte JM, Fraser DJ, Grant JWA

J Anim Ecol. 2019 Oct 23;: Authors: Matte JM, Fraser DJ, Grant JWA

Article GUID: 31642512

Causes of maladaptation.

Author(s): Brady SP, Bolnick DI, Angert AL, Gonzalez A, Barrett RDH, Crispo E, Derry AM, Eckert CG, Fraser DJ, Fussmann GF, Guichard F, Lamy T, McAdam ...

Evol Appl. 2019 Aug;12(7):1229-1242 Authors: Brady SP, Bolnick DI, Angert AL, Gonzalez A, Barrett RDH, Crispo E, Derry AM, Eckert CG, Fraser DJ, Fussmann GF, Guichard F, Lamy T, McAdam AG, Newman ...

Article GUID: 31417611

Conservation through the lens of (mal)adaptation: Concepts and meta-analysis.

Author(s): Derry AM, Fraser DJ, Brady SP, Astorg L, Lawrence ER, Martin GK, Matte JM, Negrín Dastis JO, Paccard A, Barrett RDH, Chapman LJ, Lane JE, Ba...

Evol Appl. 2019 Aug;12(7):1287-1304 Authors: Derry AM, Fraser DJ, Brady SP, Astorg L, Lawrence ER, Martin GK, Matte JM, Negrín Dastis JO, Paccard A, Barrett RDH, Chapman LJ, Lane JE, Ballas C...

Article GUID: 31417615

A critical assessment of estimating census population size from genetic population size (or vice versa) in three fishes.

Author(s): Yates MC, Bernos TA, Fraser DJ

Evol Appl. 2017 10;10(9):935-945 Authors: Yates MC, Bernos TA, Fraser DJ

Article GUID: 29151884

Genetic diversity of small populations: Not always "doom and gloom"?

Author(s): Fraser DJ

Mol Ecol. 2017 12;26(23):6499-6501 Authors: Fraser DJ

Article GUID: 29243868

Evaluating a 5-year metal contamination remediation and the biomonitoring potential of a freshwater gastropod along the Xiangjiang River, China.

Author(s): Li D, Pi J, Zhang T, Tan X, Fraser DJ

Environ Sci Pollut Res Int. 2018 Jul;25(21):21127-21137 Authors: Li D, Pi J, Zhang T, Tan X, Fraser DJ

Article GUID: 29770938

Geo-referenced population-specific microsatellite data across American continents, the MacroPopGen Database.

Author(s): Lawrence ER, Benavente JN, Matte JM, Marin K, Wells ZRR, Bernos TA, Krasteva N, Habrich A, Nessel GA, Koumrouyan RA, Fraser DJ

Sci Data. 2019 04 03;6(1):14 Authors: Lawrence ER, Benavente JN, Matte JM, Marin K, Wells ZRR, Bernos TA, Krasteva N, Habrich A, Nessel GA, Koumrouyan RA, Fraser DJ

Article GUID: 30944329


Title:Genetic diversity of small populations: Not always "doom and gloom"?
Authors:Fraser DJ
Link:https://www.ncbi.nlm.nih.gov/pubmed/29243868?dopt=Abstract
DOI:10.1111/mec.14371
Category:Mol Ecol
PMID:29243868
Dept Affiliation: BIOLOGY
1 Department of Biology, Concordia University, Montreal, QC, Canada.

Description:

Genetic diversity of small populations: Not always "doom and gloom"?

Mol Ecol. 2017 12;26(23):6499-6501

Authors: Fraser DJ

Abstract

Is a key theory of evolutionary and conservation biology-that loss of genetic diversity can be predicted from population size-on shaky ground? In the face of increasing human-induced species depletion and habitat fragmentation, this question and the study of genetic diversity in small populations are paramount to understanding the limits of species' responses to environmental change and to providing remedies to endangered species conservation. Few empirical studies have investigated to what degree some small populations might be buffered against losses of genetic diversity. Even fewer studies have experimentally tested the potential underlying mechanisms. The study of Schou, Loeschcke, Bechsgaard, Schlotterer, and Kristensen () in this issue of Molecular Ecology is elegant in combining classic common garden experimentation with population genomics on an iconic experimental model species (Drosophila melanogaster). The authors reveal a slower rate of loss of genetic diversity in small populations under varying thermal regimes than theoretically expected and hence an unexpected retention of genetic diversity. They are further able to hone in on a plausible mechanism: associative overdominance, wherein homozygosity of deleterious recessive alleles is especially disfavoured in genomic regions of low recombination. These results contribute to a budding literature on the varying mechanisms underlying genetic diversity in small populations and encourage further such research towards the effective management and conservation of fragmented or endangered populations.

PMID: 29243868 [PubMed - indexed for MEDLINE]