Keyword search (3,619 papers available)


File-based localization of numerical perturbations in data analysis pipelines.

Author(s): Salari A, Kiar G, Lewis L, Evans AC, Glatard T

BACKGROUND: Data analysis pipelines are known to be affected by computational conditions, presumably owing to the creation and propagation of numerical errors. While this process could play a major role in the current reproducibility crisis, the precise cau...

Article GUID: 33269388

Comparing perturbation models for evaluating stability of neuroimaging pipelines.

Author(s): Kiar G, de Oliveira Castro P, Rioux P, Petit E, Brown ST, Evans AC, Glatard T

With an increase in awareness regarding a troubling lack of reproducibility in analytical software tools, the degree of validity in scientific derivatives and their downstream results has become unclear. The nature of reproducibility issues may vary across ...

Article GUID: 32831546

A Quantitative Comparison of Overlapping and Non-Overlapping Sliding Windows for Human Activity Recognition Using Inertial Sensors.

Author(s): Dehghani A, Sarbishei O, Glatard T, Shihab E

Sensors (Basel). 2019 Nov 18;19(22): Authors: Dehghani A, Sarbishei O, Glatard T, Shihab E

Article GUID: 31752158

Cyberinfrastructure for Open Science at the Montreal Neurological Institute.

Author(s): Das S, Glatard T, Rogers C, Saigle J, Paiva S, MacIntyre L, Safi-Harab M, Rousseau ME, Stirling J, Khalili-Mahani N, MacFarlane D, Kostopoul...

Front Neuroinform. 2016;10:53 Authors: Das S, Glatard T, Rogers C, Saigle J, Paiva S, MacIntyre L, Safi-Harab M, Rousseau ME, Stirling J, Khalili-Mahani N, MacFarlane D, Kostopoulos P, Rioux P, Ma...

Article GUID: 28111547

Best practices in data analysis and sharing in neuroimaging using MRI.

Author(s): Nichols TE, Das S, Eickhoff SB, Evans AC, Glatard T, Hanke M, Kriegeskorte N, Milham MP, Poldrack RA, Poline JB, Proal E, Thirion B, Van Ess...

Nat Neurosci. 2017 Feb 23;20(3):299-303 Authors: Nichols TE, Das S, Eickhoff SB, Evans AC, Glatard T, Hanke M, Kriegeskorte N, Milham MP, Poldrack RA, Poline JB, Proal E, Thirion B, Van Essen DC, ...

Article GUID: 28230846

The first MICCAI challenge on PET tumor segmentation.

Author(s): Hatt M, Laurent B, Ouahabi A, Fayad H, Tan S, Li L, Lu W, Jaouen V, Tauber C, Czakon J, Drapejkowski F, Dyrka W, Camarasu-Pop S, Cervenansky...

Med Image Anal. 2018 02;44:177-195 Authors: Hatt M, Laurent B, Ouahabi A, Fayad H, Tan S, Li L, Lu W, Jaouen V, Tauber C, Czakon J, Drapejkowski F, Dyrka W, Camarasu-Pop S, Cervenansky F, Girard P...

Article GUID: 29268169

Boutiques: a flexible framework to integrate command-line applications in computing platforms.

Author(s): Glatard T, Kiar G, Aumentado-Armstrong T, Beck N, Bellec P, Bernard R, Bonnet A, Brown ST, Camarasu-Pop S, Cervenansky F, Das S, Ferreira da...

Gigascience. 2018 05 01;7(5): Authors: Glatard T, Kiar G, Aumentado-Armstrong T, Beck N, Bellec P, Bernard R, Bonnet A, Brown ST, Camarasu-Pop S, Cervenansky F, Das S, Ferreira da Silva R, Flandin...

Article GUID: 29718199

Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure.

Author(s): Commowick O, Istace A, Kain M, Laurent B, Leray F, Simon M, Pop SC, Girard P, Améli R, Ferré JC, Kerbrat A, Tourdias T, Cervenansky F, Glata...

Sci Rep. 2018 Sep 12;8(1):13650 Authors: Commowick O, Istace A, Kain M, Laurent B, Leray F, Simon M, Pop SC, Girard P, Améli R, Ferré JC, Kerbrat A, Tourdias T, Cervenansky F, Glatard T,...

Article GUID: 30209345

A Serverless Tool for Platform Agnostic Computational Experiment Management.

Author(s): Kiar G, Brown ST, Glatard T, Evans AC

Front Neuroinform. 2019;13:12 Authors: Kiar G, Brown ST, Glatard T, Evans AC

Article GUID: 30890927


Title:The first MICCAI challenge on PET tumor segmentation.
Authors:Hatt MLaurent BOuahabi AFayad HTan SLi LLu WJaouen VTauber CCzakon JDrapejkowski FDyrka WCamarasu-Pop SCervenansky FGirard PGlatard TKain MYao YBarillot CKirov AVisvikis D
Link:https://www.ncbi.nlm.nih.gov/pubmed/29268169?dopt=Abstract
DOI:10.1016/j.media.2017.12.007
Category:Med Image Anal
PMID:29268169
Dept Affiliation: IMAGING
1 LaTIM, UMR 1101, INSERM, IBSAM, UBO, UBL, Brest, France. Electronic address: hatt@univ-brest.fr.
2 LaTIM, UMR 1101, INSERM, IBSAM, UBO, UBL, Brest, France.
3 Key Laboratory of Image Processing and Intelligent Control of Ministry of Education of China, School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China.
4 Memorial Sloan-Kettering Cancer Center, New-York, USA.
5 INSERM, UMR 930, Imaging and brain, University of Tours, France.
6 Stermedia Sp. z o. o., ul. A. Ostrowskiego 13, Wroclaw, Poland.
7 Stermedia Sp. z o. o., ul. A. Ostrowskiego 13, Wroclaw, Poland; Wroclaw University of Science and Technology, Faculty of Fundamental Problems of Technology, Department of Biomedical Engineering, Poland.
8 Université de Lyon, CREATIS, CNRS UMR5220, INSERM UMR 1044, INSA-Lyon, Université Lyon 1, Lyon, France.
9 Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada.
10 INRIA, Visages project-team, CNRS, IRISA 6074, INSERM, Visages, UMR 1228, University of Rennes I, Rennes Cx 35042, France.

Description:

The first MICCAI challenge on PET tumor segmentation.

Med Image Anal. 2018 02;44:177-195

Authors: Hatt M, Laurent B, Ouahabi A, Fayad H, Tan S, Li L, Lu W, Jaouen V, Tauber C, Czakon J, Drapejkowski F, Dyrka W, Camarasu-Pop S, Cervenansky F, Girard P, Glatard T, Kain M, Yao Y, Barillot C, Kirov A, Visvikis D

Abstract

INTRODUCTION: Automatic functional volume segmentation in PET images is a challenge that has been addressed using a large array of methods. A major limitation for the field has been the lack of a benchmark dataset that would allow direct comparison of the results in the various publications. In the present work, we describe a comparison of recent methods on a large dataset following recommendations by the American Association of Physicists in Medicine (AAPM) task group (TG) 211, which was carried out within a MICCAI (Medical Image Computing and Computer Assisted Intervention) challenge.

MATERIALS AND METHODS: Organization and funding was provided by France Life Imaging (FLI). A dataset of 176 images combining simulated, phantom and clinical images was assembled. A website allowed the participants to register and download training data (n?=?19). Challengers then submitted encapsulated pipelines on an online platform that autonomously ran the algorithms on the testing data (n?=?157) and evaluated the results. The methods were ranked according to the arithmetic mean of sensitivity and positive predictive value.

RESULTS: Sixteen teams registered but only four provided manuscripts and pipeline(s) for a total of 10 methods. In addition, results using two thresholds and the Fuzzy Locally Adaptive Bayesian (FLAB) were generated. All competing methods except one performed with median accuracy above 0.8. The method with the highest score was the convolutional neural network-based segmentation, which significantly outperformed 9 out of 12 of the other methods, but not the improved K-Means, Gaussian Model Mixture and Fuzzy C-Means methods.

CONCLUSION: The most rigorous comparative study of PET segmentation algorithms to date was carried out using a dataset that is the largest used in such studies so far. The hierarchy amongst the methods in terms of accuracy did not depend strongly on the subset of datasets or the metrics (or combination of metrics). All the methods submitted by the challengers except one demonstrated good performance with median accuracy scores above 0.8.

PMID: 29268169 [PubMed - indexed for MEDLINE]