Keyword search (3,448 papers available)


Lipid metabolism and transport define longevity of the yeast Saccharomyces cerevisiae.

Author(s): Mitrofanova D, Dakik P, McAuley M, Medkour Y, Mohammad K, Titorenko VI

Front Biosci (Landmark Ed). 2018 Jan 01;23:1166-1194 Authors: Mitrofanova D, Dakik P, McAuley M, Medkour Y, Mohammad K, Titorenko VI

Article GUID: 28930594

Some Metabolites Act as Second Messengers in Yeast Chronological Aging.

Author(s): Mohammad K, Dakik P, Medkour Y, McAuley M, Mitrofanova D, Titorenko VI

Int J Mol Sci. 2018 Mar 15;19(3): Authors: Mohammad K, Dakik P, Medkour Y, McAuley M, Mitrofanova D, Titorenko VI

Article GUID: 29543708

Yeast Cells Exposed to Exogenous Palmitoleic Acid Either Adapt to Stress and Survive or Commit to Regulated Liponecrosis and Die.

Author(s): Mohammad K, Dakik P, Medkour Y, McAuley M, Mitrofanova D, Titorenko VI

Oxid Med Cell Longev. 2018;2018:3074769 Authors: Mohammad K, Dakik P, Medkour Y, McAuley M, Mitrofanova D, Titorenko VI

Article GUID: 29636840

Pairwise combinations of chemical compounds that delay yeast chronological aging through different signaling pathways display synergistic effects on the extent of aging delay.

Author(s): Dakik P, McAuley M, Chancharoen M, Mitrofanova D, Lozano Rodriguez ME, Baratang Junio JA, Lutchman V, Cortes B, Simard É, Titorenko VI

Oncotarget. 2019 Jan 08;10(3):313-338 Authors: Dakik P, McAuley M, Chancharoen M, Mitrofanova D, Lozano Rodriguez ME, Baratang Junio JA, Lutchman V, Cortes B, Simard É, Titorenko VI

Article GUID: 30719227


Title:Some Metabolites Act as Second Messengers in Yeast Chronological Aging.
Authors:Mohammad KDakik PMedkour YMcAuley MMitrofanova DTitorenko VI
Link:https://www.ncbi.nlm.nih.gov/pubmed/29543708?dopt=Abstract
DOI:10.3390/ijms19030860
Category:Int J Mol Sci
PMID:29543708
Dept Affiliation: BIOLOGY
1 Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada. karamat.mohammad@concordia.ca.
2 Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada. pameladakik@gmail.com.
3 Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada. writetoyounes@gmail.com.
4 Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada. melissa.mcauley@concordia.ca.
5 Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada. mitrofanova_darya@hotmail.com.
6 Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada. vladimir.titorenko@concordia.ca.

Description:

Some Metabolites Act as Second Messengers in Yeast Chronological Aging.

Int J Mol Sci. 2018 Mar 15;19(3):

Authors: Mohammad K, Dakik P, Medkour Y, McAuley M, Mitrofanova D, Titorenko VI

Abstract

The concentrations of some key metabolic intermediates play essential roles in regulating the longevity of the chronologically aging yeast Saccharomyces cerevisiae. These key metabolites are detected by certain ligand-specific protein sensors that respond to concentration changes of the key metabolites by altering the efficiencies of longevity-defining cellular processes. The concentrations of the key metabolites that affect yeast chronological aging are controlled spatially and temporally. Here, we analyze mechanisms through which the spatiotemporal dynamics of changes in the concentrations of the key metabolites influence yeast chronological lifespan. Our analysis indicates that a distinct set of metabolites can act as second messengers that define the pace of yeast chronological aging. Molecules that can operate both as intermediates of yeast metabolism and as second messengers of yeast chronological aging include reduced nicotinamide adenine dinucleotide phosphate (NADPH), glycerol, trehalose, hydrogen peroxide, amino acids, sphingolipids, spermidine, hydrogen sulfide, acetic acid, ethanol, free fatty acids, and diacylglycerol. We discuss several properties that these second messengers of yeast chronological aging have in common with second messengers of signal transduction. We outline how these second messengers of yeast chronological aging elicit changes in cell functionality and viability in response to changes in the nutrient, energy, stress, and proliferation status of the cell.

PMID: 29543708 [PubMed - indexed for MEDLINE]