Keyword search (3,448 papers available)


Simulation of Capillary Hemodynamics and Comparison with Experimental Results of Microphantom Perfusion Weighted Imaging.

Author(s): S S, N RA

J Biomed Phys Eng. 2020 Jun;10(3):291-298 Authors: S S, N RA

Article GUID: 32637373

The Comprehensive Assessment of Neurodegeneration and Dementia: Canadian Cohort Study.

Author(s): Chertkow H, Borrie M, Whitehead V, Black SE, Feldman HH, Gauthier S, Hogan DB, Masellis M, McGilton K, Rockwood K, Tierney MC, Andrew M, Hsi...

Can J Neurol Sci. 2019 Jul 16;:1-13 Authors: Chertkow H, Borrie M, Whitehead V, Black SE, Feldman HH, Gauthier S, Hogan DB, Masellis M, McGilton K, Rockwood K, Tierney MC, Andrew M, Hsiung GR, Cam...

Article GUID: 31309917

Author Correction: Building a global alliance of biofoundries.

Author(s): Hillson N, Caddick M, Cai Y, Carrasco JA, Chang MW, Curach NC, Bell DJ, Feuvre RL, Friedman DC, Fu X, Gold ND, Herrgård MJ, Holowko MB, John...

Nat Commun. 2019 Jul 11;10(1):3132 Authors: Hillson N, Caddick M, Cai Y, Carrasco JA, Chang MW, Curach NC, Bell DJ, Feuvre RL, Friedman DC, Fu X, Gold ND, Herrgård MJ, Holowko MB, Johnson JR,...

Article GUID: 31296848

The priming effect of food persists following blockade of dopamine receptors.

Author(s): Evangelista C, Hantson A, Shams WM, Almey A, Pileggi M, Voisard JR, Boulos V, Al-Qadri Y, Gonzalez Cautela BV, Zhou FX, Duchemin J, Habrich ...

Eur J Neurosci. 2019 Jul 27;: Authors: Evangelista C, Hantson A, Shams WM, Almey A, Pileggi M, Voisard JR, Boulos V, Al-Qadri Y, Gonzalez Cautela BV, Zhou FX, Duchemin J, Habrich A, Tito N, Koumro...

Article GUID: 31350860

Geo-referenced population-specific microsatellite data across American continents, the MacroPopGen Database.

Author(s): Lawrence ER, Benavente JN, Matte JM, Marin K, Wells ZRR, Bernos TA, Krasteva N, Habrich A, Nessel GA, Koumrouyan RA, Fraser DJ

Sci Data. 2019 04 03;6(1):14 Authors: Lawrence ER, Benavente JN, Matte JM, Marin K, Wells ZRR, Bernos TA, Krasteva N, Habrich A, Nessel GA, Koumrouyan RA, Fraser DJ

Article GUID: 30944329

Building a global alliance of biofoundries.

Author(s): Hillson N, Caddick M, Cai Y, Carrasco JA, Chang MW, Curach NC, Bell DJ, Le Feuvre R, Friedman DC, Fu X, Gold ND, Herrgård MJ, Holowko MB, Jo...

Nat Commun. 2019 05 09;10(1):2040 Authors: Hillson N, Caddick M, Cai Y, Carrasco JA, Chang MW, Curach NC, Bell DJ, Le Feuvre R, Friedman DC, Fu X, Gold ND, Herrgård MJ, Holowko MB, Johnson JR...

Article GUID: 31068573


Title:Simulation of Capillary Hemodynamics and Comparison with Experimental Results of Microphantom Perfusion Weighted Imaging.
Authors:S SN RA
Link:https://www.ncbi.nlm.nih.gov/pubmed/32637373?dopt=Abstract
DOI:10.31661/jbpe.v0i0.910
Category:J Biomed Phys Eng
PMID:32637373
Dept Affiliation: PHYSICS
1 MSc Student, Physics and Medical Engineering Department, Medical Faculty, Tehran University of Medical Sciences, Tehran, Iran.
2 PhD, Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
3 PhD, PERFORM Preventive Medicine and Health Care Center, Concordia University, Montreal, Quebec, Canada.
4 PhD, Medical Pharmaceutical Sciences Research Center (MPRC), the institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran.

Description:

Simulation of Capillary Hemodynamics and Comparison with Experimental Results of Microphantom Perfusion Weighted Imaging.

J Biomed Phys Eng. 2020 Jun;10(3):291-298

Authors: S S, N RA

Abstract

Background: Perfusion imaging, one of MRI's techniques, is widely used to test damaged tissues of the body. The parameters used in this technique include cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT). The MRI scanner contains a device called a "phantom", which controls the accuracy of various imaging models.

Objective: Our goal is to design and produce a microphantom to control the perfusion-imaging model in MRI scanners.

Material and Methods: Firstly, in an analytical study type, we designed the phantom based on Murray's minimum work rule using AutoCAD software. Next, the phantom was fabricated using lithography and then imaged using a Siemens Magnetom 3T Prisma MRI scanner at the National Brain Laboratory. Finally, the velocity and pressure in the capillary network was simulated using COMSOL software.

Results: CBF, CBV, and MTT curves for the capillary network were obtained at different times. In addition, the simulations showed that the velocity and pressure in the capillary network were between 0.0001 and 0.0005 m/s and between 5 and 25 mm/Hg, respectively.

Conclusion: The fabricated microphantom was used to simulate the movement of blood within tissues of the body. Different parameters of perfusion imaging were measured inside the phantom, and they in the phantom were similar to in the body.

PMID: 32637373 [PubMed]