Keyword search (3,448 papers available)


Hof1 plays a checkpoint related role in MMS induced DNA damage response in Candida albicans.

Author(s): Feng J, Islam A, Bean B, Feng J, Sparapani S, Shrivastava M, Goyal A, Omran RP, Mallick J, Whiteway M

Mol Biol Cell. 2020 Jan 15;:mbcE19060316 Authors: Feng J, Islam A, Bean B, Feng J, Sparapani S, Shrivastava M, Goyal A, Omran RP, Mallick J, Whiteway M

Article GUID: 31940254

RNA sequencing reveals an additional Crz1-binding motif in promoters of its target genes in the human fungal pathogen Candida albicans.

Author(s): Xu H, Fang T, Omran RP, Whiteway M, Jiang L

Cell Commun Signal. 2020 Jan 03;18(1):1 Authors: Xu H, Fang T, Omran RP, Whiteway M, Jiang L

Article GUID: 31900175

Screening of Candida albicans GRACE library revealed a unique pattern of biofilm formation under repression of the essential gene ILS1.

Author(s): Costa ACBP, Omran RP, Correia-Mesquita TO, Dumeaux V, Whiteway M

Sci Rep. 2019 Jun 24;9(1):9187 Authors: Costa ACBP, Omran RP, Correia-Mesquita TO, Dumeaux V, Whiteway M

Article GUID: 31235750

MAP Kinase Regulation of the Candida albicans Pheromone Pathway.

Author(s): Rastghalam G, Omran RP, Alizadeh M, Fulton D, Mallick J, Whiteway M

mSphere. 2019 02 20;4(1): Authors: Rastghalam G, Omran RP, Alizadeh M, Fulton D, Mallick J, Whiteway M

Article GUID: 30787119

Mms21: A Putative SUMO E3 Ligase in Candida albicans That Negatively Regulates Invasiveness and Filamentation, and Is Required for the Genotoxic and Cellular Stress Response.

Author(s): Islam A, Tebbji F, Mallick J, Regan H, Dumeaux V, Omran RP, Whiteway M

Genetics. 2019 02;211(2):579-595 Authors: Islam A, Tebbji F, Mallick J, Regan H, Dumeaux V, Omran RP, Whiteway M

Article GUID: 30530734

Put3 Positively Regulates Proline Utilization in Candida albicans.

Author(s): Tebung WA, Omran RP, Fulton DL, Morschhäuser J, Whiteway M

mSphere. 2017 Nov-Dec;2(6): Authors: Tebung WA, Omran RP, Fulton DL, Morschhäuser J, Whiteway M

Article GUID: 29242833


Title:MAP Kinase Regulation of the Candida albicans Pheromone Pathway.
Authors:Rastghalam GOmran RPAlizadeh MFulton DMallick JWhiteway M
Link:https://www.ncbi.nlm.nih.gov/pubmed/30787119?dopt=Abstract
DOI:10.1128/mSphere.00598-18
Category:mSphere
PMID:30787119
Dept Affiliation: BIOLOGY
1 Department of Biology, Concordia University, Montreal, Quebec, Canada.
2 Department of Biology, Concordia University, Montreal, Quebec, Canada malcolm.whiteway@concordia.ca.

Description:

MAP Kinase Regulation of the Candida albicans Pheromone Pathway.

mSphere. 2019 02 20;4(1):

Authors: Rastghalam G, Omran RP, Alizadeh M, Fulton D, Mallick J, Whiteway M

Abstract

We investigated the relationships of the Cek1 and Cek2 mitogen-activated protein (MAP) kinases and the putative MAP kinase phosphatase Cpp1 in the mating process of Candida albicans Mutants of the CPP1 gene are hyperresponsive to pheromone, generating large halos, high levels of projections, and an increase in pheromone-responsive gene expression. Mating-type-homozygous opaque cells that lack both kinases are sterile, consistent with previous observations, although several lines of evidence show that the two kinases do not simply provide redundant functions in the mating process. Loss of CEK1 reduces mating significantly, to about 0.3% of wild-type strains, and also reduces projection formation and pheromone-mediated gene expression. In contrast, loss of CEK2 has less of an effect, reducing mating to approximately one-third that of the wild-type strain and moderately reducing projection formation but having little influence on the induction of gene expression. However, loss of Cek2 function reduces adaptation to pheromone-mediated arrest. The mutation enhances pheromone response halos to a level similar to that of cpp1 mutants, although the cpp1 mutants are considerably more mating defective than the cek2 mutant. The double cek2 cpp1 mutant shows enhanced responsiveness relative to either single mutant in terms of gene expression and halo formation, suggesting the kinase and phosphatase roles in the adaptation process are independent. Analysis of protein phosphorylation shows that Cek1 undergoes pheromone-mediated phosphorylation of the activation loop, and this phosphorylation is enhanced in cells lacking either the Cpp1 phosphatase or the Cek2 kinase. In addition, Cek1-GFP shows enhanced nuclear localization in response to pheromone treatment. In contrast, Cek2 shows no evidence for pheromone-mediated phosphorylation or pheromone-mediated nuclear localization. Intriguingly, however, deletion of CPP1 enhances both the phosphorylation state and the nuclear localization of Cek2-GFP. Overall, these results identify a complex interaction among the MAP kinases and MAP kinase phosphatase that function in the C. albicans mating pathway.IMPORTANCE MAP kinases and their regulators are critical components of eukaryotic signaling pathways implicated in normal cell behavior as well as abnormal behaviors linked to diseases such as cancer. The mating pathway of the yeast Saccharomyces cerevisiae was central in establishing the MAP kinase paradigm. Here we investigate the mating pathway in a different ascomycete, the fungal pathogen C. albicans In this dimorphic fungus MAP kinases are also implicated in the mating response, with two MAP kinases apparently playing redundant roles in the mating process. This work establishes that while some level of mating can occur in the presence of a single kinase, the Cek1 kinase is most important for mating, while the Cek2 kinase is involved in adaptation to signaling. While both kinases appear to be themselves