Keyword search (3,448 papers available)


Effects of bilateral anterior agranular insula lesions on food anticipatory activity in rats.

Author(s): Gavrila AM, Hood S, Robinson B, Amir S

PLoS One. 2017;12(6):e0179370 Authors: Gavrila AM, Hood S, Robinson B, Amir S

Article GUID: 28594962

Comprehensive mapping of regional expression of the clock protein PERIOD2 in rat forebrain across the 24-h day.

Author(s): Harbour VL, Weigl Y, Robinson B, Amir S

PLoS One. 2013;8(10):e76391 Authors: Harbour VL, Weigl Y, Robinson B, Amir S

Article GUID: 24124556

Phase differences in expression of circadian clock genes in the central nucleus of the amygdala, dentate gyrus, and suprachiasmatic nucleus in the rat.

Author(s): Harbour VL, Weigl Y, Robinson B, Amir S

PLoS One. 2014;9(7):e103309 Authors: Harbour VL, Weigl Y, Robinson B, Amir S

Article GUID: 25068868

Stress-induced changes in the expression of the clock protein PERIOD1 in the rat limbic forebrain and hypothalamus: role of stress type, time of day, and predictability.

Author(s): Al-Safadi S, Al-Safadi A, Branchaud M, Rutherford S, Dayanandan A, Robinson B, Amir S

PLoS One. 2014;9(10):e111166 Authors: Al-Safadi S, Al-Safadi A, Branchaud M, Rutherford S, Dayanandan A, Robinson B, Amir S

Article GUID: 25338089


Title:Stress-induced changes in the expression of the clock protein PERIOD1 in the rat limbic forebrain and hypothalamus: role of stress type, time of day, and predictability.
Authors:Al-Safadi SAl-Safadi ABranchaud MRutherford SDayanandan ARobinson BAmir S
Link:https://www.ncbi.nlm.nih.gov/pubmed/25338089?dopt=Abstract
Category:PLoS One
PMID:25338089
Dept Affiliation: CSBN
1 Department of Biology, Concordia University, Montréal, Quebéc, Canada; Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, Quebéc, Canada.
2 Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, Quebéc, Canada.

Description:

Stress-induced changes in the expression of the clock protein PERIOD1 in the rat limbic forebrain and hypothalamus: role of stress type, time of day, and predictability.

PLoS One. 2014;9(10):e111166

Authors: Al-Safadi S, Al-Safadi A, Branchaud M, Rutherford S, Dayanandan A, Robinson B, Amir S

Abstract

Stressful events can disrupt circadian rhythms in mammals but mechanisms underlying this disruption remain largely unknown. One hypothesis is that stress alters circadian protein expression in the forebrain, leading to functional dysregulation of the brain circadian network and consequent disruption of circadian physiological and behavioral rhythms. Here we characterized the effects of several different stressors on the expression of the core clock protein, PER1 and the activity marker, FOS in select forebrain and hypothalamic nuclei in rats. We found that acute exposure to processive stressors, restraint and forced swim, elevated PER1 and FOS expression in the paraventricular and dorsomedial hypothalamic nuclei and piriform cortex but suppressed PER1 and FOS levels exclusively in the central nucleus of the amygdala (CEAl) and oval nucleus of the bed nucleus of the stria terminalis (BNSTov). Conversely, systemic stressors, interleukin-1ß and 2-Deoxy-D-glucose, increased PER1 and FOS levels in all regions studied, including the CEAl and BNSTov. PER1 levels in the suprachiasmatic nucleus (SCN), the master pacemaker, were unaffected by any of the stress manipulations. The effect of stress on PER1 and FOS was modulated by time of day and, in the case of daily restraint, by predictability. These results demonstrate that the expression of PER1 in the forebrain is modulated by stress, consistent with the hypothesis that PER1 serves as a link between stress and the brain circadian network. Furthermore, the results show that the mechanisms that control PER1 and FOS expression in CEAl and BNSTov are uniquely sensitive to differences in the type of stressor. Finally, the finding that the effect of stress on PER1 parallels its effect on FOS supports the idea that Per1 functions as an immediate-early gene. Our observations point to a novel role for PER1 as a key player in the interface between stress and circadian rhythms.

PMID: 25338089 [PubMed - indexed for MEDLINE]