Keyword search (3,448 papers available)


Dopamine neurons do not constitute an obligatory stage in the final common path for the evaluation and pursuit of brain stimulation reward.

Author(s): Trujillo-Pisanty I, Conover K, Solis P, Palacios D, Shizgal P

PLoS One. 2020;15(6):e0226722 Authors: Trujillo-Pisanty I, Conover K, Solis P, Palacios D, Shizgal P

Article GUID: 32502210

The priming effect of food persists following blockade of dopamine receptors.

Author(s): Evangelista C, Hantson A, Shams WM, Almey A, Pileggi M, Voisard JR, Boulos V, Al-Qadri Y, Gonzalez Cautela BV, Zhou FX, Duchemin J, Habrich ...

Eur J Neurosci. 2019 Jul 27;: Authors: Evangelista C, Hantson A, Shams WM, Almey A, Pileggi M, Voisard JR, Boulos V, Al-Qadri Y, Gonzalez Cautela BV, Zhou FX, Duchemin J, Habrich A, Tito N, Koumro...

Article GUID: 31350860

Learning to use past evidence in a sophisticated world model.

Author(s): Ahilan S, Solomon RB, Breton YA, Conover K, Niyogi RK, Shizgal P, Dayan P

PLoS Comput Biol. 2019 Jun 24;15(6):e1007093 Authors: Ahilan S, Solomon RB, Breton YA, Conover K, Niyogi RK, Shizgal P, Dayan P

Article GUID: 31233559

Ventral Midbrain NMDA Receptor Blockade: From Enhanced Reward and Dopamine Inactivation.

Author(s): Hernandez G, Cossette MP, Shizgal P, Rompré PP

Front Behav Neurosci. 2016;10:161 Authors: Hernandez G, Cossette MP, Shizgal P, Rompré PP

Article GUID: 27616984

Valuation of opportunity costs by rats working for rewarding electrical brain stimulation.

Author(s): Solomon RB, Conover K, Shizgal P

PLoS One. 2017;12(8):e0182120 Authors: Solomon RB, Conover K, Shizgal P

Article GUID: 28841663

17β-estradiol locally increases phasic dopamine release in the dorsal striatum.

Author(s): Shams WM, Cossette MP, Shizgal P, Brake WG

Neurosci Lett. 2018 02 05;665:29-32 Authors: Shams WM, Cossette MP, Shizgal P, Brake WG

Article GUID: 29175028

Some work and some play: microscopic and macroscopic approaches to labor and leisure.

Author(s): Niyogi RK, Shizgal P, Dayan P

PLoS Comput Biol. 2014 Dec;10(12):e1003894 Authors: Niyogi RK, Shizgal P, Dayan P

Article GUID: 25474151

Robust optical fiber patch-cords for in vivo optogenetic experiments in rats.

Author(s): Trujillo-Pisanty I, Sanio C, Chaudhri N, Shizgal P

MethodsX. 2015;2:263-71 Authors: Trujillo-Pisanty I, Sanio C, Chaudhri N, Shizgal P

Article GUID: 26150997

The neural substrates for the rewarding and dopamine-releasing effects of medial forebrain bundle stimulation have partially discrepant frequency responses.

Author(s): Cossette MP, Conover K, Shizgal P

Behav Brain Res. 2016 Jan 15;297:345-58 Authors: Cossette MP, Conover K, Shizgal P

Article GUID: 26477378

The Effects of Electrical and Optical Stimulation of Midbrain Dopaminergic Neurons on Rat 50-kHz Ultrasonic Vocalizations.

Author(s): Scardochio T, Trujillo-Pisanty I, Conover K, Shizgal P, Clarke PB

Front Behav Neurosci. 2015;9:331 Authors: Scardochio T, Trujillo-Pisanty I, Conover K, Shizgal P, Clarke PB

Article GUID: 26696851


Title:Learning to use past evidence in a sophisticated world model.
Authors:Ahilan SSolomon RBBreton YAConover KNiyogi RKShizgal PDayan P
Link:https://www.ncbi.nlm.nih.gov/pubmed/31233559?dopt=Abstract
DOI:10.1371/journal.pcbi.1007093
Category:PLoS Comput Biol
PMID:31233559
Dept Affiliation: CSBN
1 Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom.
2 Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Canada.
3 Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom.
4 Max Planck Institute for Biological Cybernetics, Tübingen, Germany.

Description:

Learning to use past evidence in a sophisticated world model.

PLoS Comput Biol. 2019 Jun 24;15(6):e1007093

Authors: Ahilan S, Solomon RB, Breton YA, Conover K, Niyogi RK, Shizgal P, Dayan P

Abstract

Humans and other animals are able to discover underlying statistical structure in their environments and exploit it to achieve efficient and effective performance. However, such structure is often difficult to learn and use because it is obscure, involving long-range temporal dependencies. Here, we analysed behavioural data from an extended experiment with rats, showing that the subjects learned the underlying statistical structure, albeit suffering at times from immediate inferential imperfections as to their current state within it. We accounted for their behaviour using a Hidden Markov Model, in which recent observations are integrated with evidence from the past. We found that over the course of training, subjects came to track their progress through the task more accurately, a change that our model largely attributed to improved integration of past evidence. This learning reflected the structure of the task, decreasing reliance on recent observations, which were potentially misleading.

PMID: 31233559 [PubMed - as supplied by publisher]