Keyword search (3,876 papers available)


Birth weight is associated with adolescent brain development: A multimodal imaging study in monozygotic twins.

Author(s): Hayward DA, Pomares F, Casey KF, Ismaylova E, Levesque M, Greenlaw K, Vitaro F, Brendgen M, Rénard F, Dionne G, Boivin M, Tremblay RE, Booij...

Previous research has shown that the prenatal environment, commonly indexed by birth weight (BW), is a predictor of morphological brain development. We previously showed in monozygotic (MZ) twins a...

Article GUID: 32881198

Accuracy and spatial properties of distributed magnetic source imaging techniques in the investigation of focal epilepsy patients.

Author(s): Pellegrino G, Hedrich T, Porras-Bettancourt M, Lina JM, Aydin Ü, Hall J, Grova C, Kobayashi E

Hum Brain Mapp. 2020 May 09;: Authors: Pellegrino G, Hedrich T, Porras-Bettancourt M, Lina JM, Aydin Ü, Hall J, Grova C, Kobayashi E

Article GUID: 32386115

Birth weight discordance, DNA methylation, and cortical morphology of adolescent monozygotic twins.

Author(s): Casey KF, Levesque ML, Szyf M, Ismaylova E, Verner MP, Suderman M, Vitaro F, Brendgen M, Dionne G, Boivin M, Tremblay RE, Booij L

Hum Brain Mapp. 2017 04;38(4):2037-2050 Authors: Casey KF, Levesque ML, Szyf M, Ismaylova E, Verner MP, Suderman M, Vitaro F, Brendgen M, Dionne G, Boivin M, Tremblay RE, Booij L

Article GUID: 28032437

Intracranial EEG potentials estimated from MEG sources: A new approach to correlate MEG and iEEG data in epilepsy.

Author(s): Grova C, Aiguabella M, Zelmann R, Lina JM, Hall JA, Kobayashi E

Hum Brain Mapp. 2016 May;37(5):1661-83 Authors: Grova C, Aiguabella M, Zelmann R, Lina JM, Hall JA, Kobayashi E

Article GUID: 26931511

Source localization of the seizure onset zone from ictal EEG/MEG data.

Author(s): Pellegrino G, Hedrich T, Chowdhury R, Hall JA, Lina JM, Dubeau F, Kobayashi E, Grova C

Hum Brain Mapp. 2016 07;37(7):2528-46 Authors: Pellegrino G, Hedrich T, Chowdhury R, Hall JA, Lina JM, Dubeau F, Kobayashi E, Grova C

Article GUID: 27059157

Clinical yield of magnetoencephalography distributed source imaging in epilepsy: A comparison with equivalent current dipole method.

Author(s): Pellegrino G, Hedrich T, Chowdhury RA, Hall JA, Dubeau F, Lina JM, Kobayashi E, Grova C

Hum Brain Mapp. 2018 01;39(1):218-231 Authors: Pellegrino G, Hedrich T, Chowdhury RA, Hall JA, Dubeau F, Lina JM, Kobayashi E, Grova C

Article GUID: 29024165

Reproducibility of EEG-MEG fusion source analysis of interictal spikes: Relevance in presurgical evaluation of epilepsy.

Author(s): Chowdhury RA, Pellegrino G, Aydin Ü, Lina JM, Dubeau F, Kobayashi E, Grova C

Hum Brain Mapp. 2018 02;39(2):880-901 Authors: Chowdhury RA, Pellegrino G, Aydin Ü, Lina JM, Dubeau F, Kobayashi E, Grova C

Article GUID: 29164737

Biomarkers, designs, and interpretations of resting-state fMRI in translational pharmacological research: A review of state-of-the-Art, challenges, and opportunities for studying brain chemistry.

Author(s): Khalili-Mahani N, Rombouts SA, van Osch MJ, Duff EP, Carbonell F, Nickerson LD, Becerra L, Dahan A, Evans AC, Soucy JP, Wise R, Zijdenbos AP...

Hum Brain Mapp. 2017 04;38(4):2276-2325 Authors: Khalili-Mahani N, Rombouts SA, van Osch MJ, Duff EP, Carbonell F, Nickerson LD, Becerra L, Dahan A, Evans AC, Soucy JP, Wise R, Zijdenbos AP, van G...

Article GUID: 28145075


Title:Reproducibility of EEG-MEG fusion source analysis of interictal spikes: Relevance in presurgical evaluation of epilepsy.
Authors:Chowdhury RAPellegrino GAydin ÜLina JMDubeau FKobayashi EGrova C
Link:https://www.ncbi.nlm.nih.gov/pubmed/29164737?dopt=Abstract
DOI:10.1002/hbm.23889
Category:Hum Brain Mapp
PMID:29164737
Dept Affiliation: PERFORM
1 Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada.
2 San Camillo Hospital IRCCS, 80 Via Alberoni, Venice, 30126, Italy.
3 Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Québec, Canada.
4 Ecole de Technologie Supérieure, Montréal, Québec, Canada.
5 Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada.
6 Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.

Description:

Reproducibility of EEG-MEG fusion source analysis of interictal spikes: Relevance in presurgical evaluation of epilepsy.

Hum Brain Mapp. 2018 02;39(2):880-901

Authors: Chowdhury RA, Pellegrino G, Aydin Ü, Lina JM, Dubeau F, Kobayashi E, Grova C

Abstract

Fusion of electroencephalography (EEG) and magnetoencephalography (MEG) data using maximum entropy on the mean method (MEM-fusion) takes advantage of the complementarities between EEG and MEG to improve localization accuracy. Simulation studies demonstrated MEM-fusion to be robust especially in noisy conditions such as single spike source localizations (SSSL). Our objective was to assess the reliability of SSSL using MEM-fusion on clinical data. We proposed to cluster SSSL results to find the most reliable and consistent source map from the reconstructed sources, the so-called consensus map. Thirty-four types of interictal epileptic discharges (IEDs) were analyzed from 26 patients with well-defined epileptogenic focus. SSSLs were performed on EEG, MEG, and fusion data and consensus maps were estimated using hierarchical clustering. Qualitative (spike-to-spike reproducibility rate, SSR) and quantitative (localization error and spatial dispersion) assessments were performed using the epileptogenic focus as clinical reference. Fusion SSSL provided significantly better results than EEG or MEG alone. Fusion found at least one cluster concordant with the clinical reference in all cases. This concordant cluster was always the one involving the highest number of spikes. Fusion yielded highest reproducibility (SSR EEG?=?55%, MEG?=?71%, fusion?=?90%) and lowest localization error. Also, using only few channels from either modality (21EEG + 272MEG or 54EEG + 25MEG) was sufficient to reach accurate fusion. MEM-fusion with consensus map approach provides an objective way of finding the most reliable and concordant generators of IEDs. We, therefore, suggest the pertinence of SSSL using MEM-fusion as a valuable clinical tool for presurgical evaluation of epilepsy.

PMID: 29164737 [PubMed - indexed for MEDLINE]