Keyword search (3,448 papers available)


Direct Polymerization Approach to Synthesize Acid-Degradable Block Copolymers Bearing Imine Pendants for Tunable pH-Sensitivity and Enhanced Release.

Author(s): Hu X, Oh JK

The development of effective approaches to synthesize smart amphiphilic block copolymers (ABPs) exhibiting acid-responsive degradation through the cleavage of acid-labile imine bonds is extensively explored for controlled release of encapsulated biomolecule...

Article GUID: 32964550

Reduction-Responsive Sheddable Carbon Nanotubes Dispersed in Aqueous Solution.

Author(s): An SY, Sun S, Oh JK

Macromol Rapid Commun. 2016 Apr;37(8):705-10 Authors: An SY, Sun S, Oh JK

Article GUID: 26890479

Multiblock Copolymer-Based Dual Dynamic Disulfide and Supramolecular Crosslinked Self-Healing Networks.

Author(s): An SY, Noh SM, Oh JK

Macromol Rapid Commun. 2017 Apr;38(8): Authors: An SY, Noh SM, Oh JK

Article GUID: 28221703

Thermally Labile Self-Healable Branched Gel Networks Fabricated by New Macromolecular Engineering Approach Utilizing Thermoreversibility.

Author(s): Jung S, Patel T, Oh JK

Macromol Rapid Commun. 2018 Mar;39(5): Authors: Jung S, Patel T, Oh JK

Article GUID: 29210490

PLA-Based Triblock Copolymer Micelles Exhibiting Dual Acidic pH/Reduction Responses at Dual Core and Core/Corona Interface Locations.

Author(s): Bawa KK, Jazani AM, Shetty C, Oh JK

Macromol Rapid Commun. 2018 Dec;39(24):e1800477 Authors: Bawa KK, Jazani AM, Shetty C, Oh JK

Article GUID: 30286258


Title:PLA-Based Triblock Copolymer Micelles Exhibiting Dual Acidic pH/Reduction Responses at Dual Core and Core/Corona Interface Locations.
Authors:Bawa KKJazani AMShetty COh JK
Link:https://www.ncbi.nlm.nih.gov/pubmed/30286258?dopt=Abstract
Category:Macromol Rapid Commun
PMID:30286258
Dept Affiliation: CHEMBIOCHEM
1 Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada.

Description:

PLA-Based Triblock Copolymer Micelles Exhibiting Dual Acidic pH/Reduction Responses at Dual Core and Core/Corona Interface Locations.

Macromol Rapid Commun. 2018 Dec;39(24):e1800477

Authors: Bawa KK, Jazani AM, Shetty C, Oh JK

Abstract

Polylactide (PLA)-based amphiphilic block copolymers and their nanoassemblies designed with stimuli-responsive degradation (SRD) hold great potential as promising candidates for tumor-targeting drug delivery. However, most of the smart PLA-based nanoassemblies are designed to respond to a single stimulus (typically reduction or acidic pH). Herein, a new strategy is reported to synthesize PLA-based block copolymer micelles exhibiting dual SRD at dual locations (DL-DSRD). The strategy utilizes a combination of ring opening polymerization, controlled radical polymerization, and facile coupling reactions to synthesize an ABA-type PLA-based triblock copolymer with a hydrophilic polymethacrylate (A) and PLA (B) blocks. Incorporation of an acidic pH-responsive ketal linkage in the center of PLA block and reduction-responsive disulfide linkages at PLA/hydrophilic polymethacrylate blocks ensure the formation of smart nanoassemblies featured with ketal linkages in the PLA cores and disulfide linkages at core/corona interfaces, thus attaining DL-DSRD. Such dual acidic pH/reduction-responses at dual locations lead to not only shedding of coronas at interfaces but also destabilization of cores, resulting in the synergistic and accelerated release of encapsulated model drugs, compared with the single stimulus systems. These results, along with lower cytotoxicity, suggest that DL-DSRD strategy can offer versatility in the development of tumor-targeting drug delivery nanocarriers.

PMID: 30286258 [PubMed - indexed for MEDLINE]